【題目】已知函數(shù)y12kx+k與函數(shù),定義新函數(shù)yy2y1

1)若k2,則新函數(shù)y   ;

2)若新函數(shù)y的解析式為yx2+bx2,則k   b   ;

3)設新函數(shù)y頂點為(mn).

①當k為何值時,n有大值,并求出最大值;

②求nm的函數(shù)解析式;

4)請你探究:函數(shù)y1與新函數(shù)y分別經(jīng)過定點B,A,函數(shù)的頂點為C,新函數(shù)y上存在一點D,使得以點AB,CD為頂點的四邊形為平行四邊形時,直接寫出k的值.

【答案】(1)x26x+1;(25,﹣12;(3)①;② n=﹣m2m+4;(4或﹣或﹣

【解析】

1)把代入 再把代入新函數(shù)即可得到答案,

2)利用新函數(shù)的定義,結(jié)論關于的方程組即可得到答案,

3)①利用新函數(shù)的定義,寫出函數(shù)解析式,化為頂點式,利用二次函數(shù)的性質(zhì)可得答案,②利用頂點坐標,消去

得到答案,

4)先分別求解的坐標,設,分三種情況討論,利用平行四邊形的對角線互相平分及中點坐標公式可得答案.

解:(1)當k2時,y12kx+k4x+2,

∵函數(shù),定義新函數(shù)yy2y1,

yx22x+34x2x26x+1

故答案為:x26x+1;

2)函數(shù)y12kx+k與函數(shù),定義新函數(shù)yy2y1,

∴新函數(shù)y的解析式為yx22x+32kxkx22k+1x+3k,

∵新函數(shù)y的解析式為yx2+bx2

b,3k=﹣2,

k5b=﹣12,

故答案為:5,﹣12;

3)①由(2)知,新函數(shù)yx22k+1x+3k=(xk12k23k+2

∵新函數(shù)y頂點為(m,n),

,

時,的最大值

②由①知,

km1代入n=﹣k23k+2得:

n=﹣m2m+4;

4)∵函數(shù)y12kx+kk2x+1),

2x+10x時,y0,

A,0),

∵新函數(shù)yx22k+1x+3kx22k+1x﹣(k+1+4x2﹣(k+1)(2x+1+4,

2x+10,即x時,y

B

∵函數(shù)

C1,2),

Dc,d),

∵以點A,B,C,D為頂點的四邊形為平行四邊形,

∴①當BCAD為對角線時,

D1,),

將點D坐標代入新函數(shù)yx22k+1x+3k,

得,12k+1+3k,

②當ABCD是對角線時,

D),

將點D坐標代入新函數(shù)yx22k+1x+3k

得,4+4k+1+3k,

k

③當ACBD為對角線時,

D1,),

將點D坐標代入新函數(shù)yx22k+1x+3k

得,12k+1+3k,

k

即滿足條件的k的值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校為了解全校1600名學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調(diào)查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).

(1)問:在這次調(diào)查中,一共抽取了多少名學生?

(2)補全頻數(shù)分布直方圖;

(3)估計全校所有學生中有多少人乘坐公交車上學.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每一個小正方形的邊長都是1個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A1,1),B3,2),C2,4).

1)畫出△ABC關于x軸對稱的△A1B1C1,直接寫出點A1的坐標;

2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

3)在(2)的條件下,求BC邊所掃過的面積.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線軸交于點、,與軸交于點,拋物線的頂點軸的距離為

1)如圖1,求拋物線的解析式;

2)如圖2,點為第三象限內(nèi)的拋物線上一點,連接軸于點,過點軸于點,連接并延長交于點,求證:;

3)如圖3,在(2)的條件下,點為第二象限內(nèi)的拋物線上的一點,分別連接、,點的中點,點為第二象限內(nèi)的一點,分別連接,,,且,,若,求點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某校組織學經(jīng)典,用經(jīng)典知識競賽,每班參加比賽的學生人數(shù)相同,成績分為四個等級,其中相應等級的得分依次記為分,分,分,分,學校將某年級的一班和二班的成績整理并繪制成如下的統(tǒng)計圖:

請你根據(jù)以上提供的信息解答下列問題:

1)此次競賽中二班成績的人數(shù)為 ;

2)請你將下表補充完整:

平均數(shù)()

中位數(shù)()

眾數(shù)()

一班

二班

3)請你對這次兩班成績統(tǒng)計數(shù)據(jù)的結(jié)果進行分析(寫出一條結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種高檔蔬菜莼菜,其進價為16/kg.經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(/kg)的一次函數(shù),其售價、日銷售量對應值如表:

售價(/)

20

30

40

日銷售量()

80

60

40

(1)關于的函數(shù)解析式(不要求寫出自變量的取值范圍);

(2)為多少時,當天的銷售利潤 ()最大?最大利潤為多少?

(3)由于產(chǎn)量日漸減少,該商品進價提高了/,物價部門規(guī)定該商品售價不得超過36/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數(shù)關系.若日銷售最大利潤是864元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.ABC沿AB翻折后得到ABD.

(1)試說明點D在⊙O上;

(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;

(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖1,拋物線yax2+bx3x軸交于A(﹣2,0),B4,0)兩點,與y軸交于點C

1)求拋物線的表達式;

2)點N是拋物線上異于點C的動點,若△NAB的面積與△CAB的面積相等,求出點N的坐標;

3)如圖2,當POB的中點時,過點PPDx軸,交拋物線于點D.連接BD,將△PBD沿x軸向左平移m個單位長度(0m2),將平移過程中△PBD與△OBC重疊部分的面積記為S,求Sm的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點坐標為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(A在點B左側(cè)),與y軸交于點C

(1)求拋物線的解析式及點AB、C的坐標;

(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,探索并判斷四邊形CDAN是怎樣的四邊形?并對你得到的結(jié)論予以證明;

(3)直線y=mx+2與拋物線交于T,Q兩點.是否存在這樣的實數(shù)m,使以線段TQ為直徑的圓恰好過坐標原點,若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案