(2006•煙臺)如圖所示,在等腰直角三角形ABC中,∠B=90°,將△ABC繞點A逆時針旋轉60°后得到的△AB′C′,則∠BAC′等于( )

A.60°
B.105°
C.120°
D.135°
【答案】分析:根據(jù)題意,將△ABC繞點A逆時針旋轉60°后得到的△AB′C′,又根據(jù)旋轉的性質(zhì),可得∠BAC=45°,進而可得∠BAC′的大。
解答:解:∵在等腰直角三角形ABC中,∠B=90°,
將△ABC繞點A逆時針旋轉60°后得到的△AB′C′,
∴∠BAC=45°,
∴∠BAC′=45°+60°=105°.
故選B.
點評:本題考查旋轉的性質(zhì):旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.要注意旋轉的三要素:①定點為旋轉中心;②旋轉方向;③旋轉角度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2006•煙臺)如圖,直線分別與y軸、x軸相交于點A,點B,且AB=5,一個圓心在坐標原點,半徑為1的圓,以0.8個單位/秒的速度向y軸正方向運動,設此動圓圓心離開坐標原點的時間為t(t≥0)(秒).
(1)求直線AB的解析式;
(2)如圖1,t為何值時,動圓與直線AB相切;
(3)如圖2,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以1個單位/秒的速度運動,設t秒時點P到動圓圓心C的距離為s,求s與t的關系式;
(4)在(3)中,動點P自剛接觸圓面起,經(jīng)多長時間后離開了圓面?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省煙臺市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•煙臺)如圖,直線分別與y軸、x軸相交于點A,點B,且AB=5,一個圓心在坐標原點,半徑為1的圓,以0.8個單位/秒的速度向y軸正方向運動,設此動圓圓心離開坐標原點的時間為t(t≥0)(秒).
(1)求直線AB的解析式;
(2)如圖1,t為何值時,動圓與直線AB相切;
(3)如圖2,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以1個單位/秒的速度運動,設t秒時點P到動圓圓心C的距離為s,求s與t的關系式;
(4)在(3)中,動點P自剛接觸圓面起,經(jīng)多長時間后離開了圓面?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省煙臺市中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2006•煙臺)如圖,兩建筑物AB和CD的水平距離為30米,從A點測得D點的俯角為30°,測得C點的俯角為60°,則建筑物CD的高為    米.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山東省煙臺市中考數(shù)學試卷(大綱卷)(解析版) 題型:選擇題

(2006•煙臺)如圖所示,在等腰直角三角形ABC中,∠B=90°,將△ABC繞點A逆時針旋轉60°后得到的△AB′C′,則∠BAC′等于( )

A.60°
B.105°
C.120°
D.135°

查看答案和解析>>

同步練習冊答案