【題目】如圖,AB是⊙O的直徑,C是線段OB上的一點(diǎn)(不與點(diǎn)B重合),D,E是半圓上的點(diǎn)且CD與BE交于點(diǎn)F,用①,②DC⊥AB,③FB=FD中的兩個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論組成一個(gè)命題,則組成真命題的個(gè)數(shù)為( )
A.0B.1C.2D.3
【答案】D
【解析】
連接OE、OD,
(1)當(dāng),DC⊥AB時(shí),由圓周角定理可得∠EOD=∠DOB,根據(jù)等腰三角形的性質(zhì)可得OF⊥BE,由CD⊥AB可得∠OFB=∠OCD=90°,利用AAS可證明△OCD≌OFB,可得∠ODC=∠OBF,根據(jù)等腰三角形的性質(zhì)可得∠OBD=∠ODB,利用角的和差關(guān)系可得∠FBD=∠FDB,即可證明FB=FD;
(2)當(dāng),FB=FD時(shí),同(1)可得OF⊥BE,根據(jù)等腰三角形的性質(zhì)可得∠OBD=∠ODB,∠FBD=∠FDB,利用角的和差關(guān)系可得∠ODC=∠OBF,利用ASA可證明△OCD≌OFB,可得∠OFB=∠OCD=90°,可得DC⊥AB;
(3)當(dāng)DC⊥AB,FB=FD時(shí),同(2)可得△OCD≌OFB,由DC⊥AB可得∠OFB=∠OCD=90°,根據(jù)垂徑定理可得,綜上即可得答案.
如圖,連接OE、OD,
(1)當(dāng),DC⊥AB時(shí),
∵,OD為半徑,
∴∠EOD=∠DOB,
∵OE=OB,
∴OF⊥BE,
∴∠OFB=90°,
∵DC⊥AB,
∴∠DCB=∠OFB=90°,
在△OCD和△OFB中,,
∴△OCD≌△OFB,
∴∠ODC=∠OBF,
∵OD=OB,
∴∠ODB=∠OBD,
∴∠OBD-∠OBF=∠ODB-∠ODC,即∠FDB=∠FBD,
∴FB=FD.
(2)當(dāng),FB=FD時(shí),
∵,OD為半徑,
∴∠EOD=∠DOB,
∵OE=OB,
∴OF⊥BE,
∴∠OFB=90°,
∵OD=OB,FB=FD,
∴∠ODB=∠OBD,∠FDB=∠FBD,
∴∠ODC=∠OBF,
在△OCD和△OFB中,,
∴△OCD≌△OFB,
∴∠OCD=∠OFB=90°,
∴DC⊥AB.
(3)當(dāng)DC⊥AB,FB=FD時(shí),
∵DC⊥AB,
∴∠OCD=90°,
∵OD=OB,FB=FD,
∴∠ODB=∠OBD,∠FDB=∠FBD,
∴∠ODC=∠OBF,
在△OCD和△OFB中,,
∴△OCD≌△OFB,
∴∠OFB=∠OCD=90°,
∴OD⊥BE,
∵OD是半徑,
∴.
綜上所述,組成真命題的個(gè)數(shù)為3,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).
(1)求k的值;
(2)將這個(gè)菱形沿x軸正方向平移,當(dāng)頂點(diǎn)D落在反比例函數(shù)圖象上時(shí),求菱形平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開(kāi)設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動(dòng),為了解學(xué)生對(duì)這四種體育活動(dòng)的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的對(duì)象必須選擇而且只能在四種體育活動(dòng)中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫(huà)完整).
(1)這次調(diào)查中,一共調(diào)查了________名學(xué)生;
(2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng),欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為P.
(1)直接寫(xiě)出點(diǎn)A,C,P的坐標(biāo).
(2)畫(huà)出這個(gè)函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是的一定點(diǎn),D是弦AB上的一定點(diǎn),P是弦CB上的一動(dòng)點(diǎn).連接DP,將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)得到線段.射線與交于點(diǎn)Q.已知,設(shè)P,C兩點(diǎn)間的距離為xcm,P,D兩點(diǎn)間的距離,P,Q兩點(diǎn)的距離為.
小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),,隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小石的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了,,與x的幾組對(duì)應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/cm | 4.29 | 3.33 | 1.65 | 1.22 | 1.0 | 2.24 | |
/cm | 0.88 | 2.84 | 3.57 | 4.04 | 4.17 | 3.20 | 0.98 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)據(jù)所對(duì)應(yīng)的點(diǎn),,并畫(huà)出函數(shù),的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:連接DQ,當(dāng)△DPQ為等腰三角形時(shí),PC的長(zhǎng)度約為_____cm.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小石設(shè)計(jì)的“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖的過(guò)程.
已知:如圖1,及上一點(diǎn)P.
求作:直線PQ,使得PQ與相切.
作法:如圖2,
①連接PO并延長(zhǎng)交于點(diǎn)A;
②在上任取一點(diǎn)B(點(diǎn)P,A除外),以點(diǎn)B為圓心,BP長(zhǎng)為半徑作,與射線PO的另一個(gè)交點(diǎn)為C.
③連接CB并延長(zhǎng)交于點(diǎn)Q.
④作直線PQ;
所以直線PQ就是所求作的直線.
根據(jù)小石設(shè)計(jì)的尺規(guī)作圖的過(guò)程.
(1)使用直尺和圓規(guī),補(bǔ)全圖形:(保留作圖痕跡)
(2)完成下面的證明.
證明:∵CQ是的直徑,
∴________(________________)(填推理的依據(jù))
∴.
又∵OP是的半徑,
∴PQ是的切線(________________)(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+c(a≠0)與y軸交于點(diǎn)A,將點(diǎn)A向右平移2個(gè)單位長(zhǎng)度,得到點(diǎn)B.直線與x軸,y軸分別交于點(diǎn)C,D.
(1)求拋物線的對(duì)稱軸.
(2)若點(diǎn)A與點(diǎn)D關(guān)于x軸對(duì)稱.
①求點(diǎn)B的坐標(biāo).
②若拋物線與線段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,P是邊BC上的一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為E,連接AE,連接DE并延長(zhǎng)交射線AP于點(diǎn)F,連接BF
(1)若,直接寫(xiě)出的大小(用含的式子表示).
(2)求證:.
(3)連接CF,用等式表示線段AF,BF,CF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一段長(zhǎng)為28m的鐵絲網(wǎng)與一面長(zhǎng)為8m的墻面圍成一個(gè)矩形菜園,為了使菜園面積盡可能的大,給出了甲、乙兩種圍法,請(qǐng)通過(guò)計(jì)算來(lái)說(shuō)明這個(gè)菜園長(zhǎng)、寬各為多少時(shí),面積最大?最大面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com