【題目】在平面直角坐標系中表示下面各點:

A0,3 B1,-3 C3,-5 D-3,-5 E3,5.連接CE,CD.

(1)A點到原點的距離是___個單位長度;B點到直線CD的距離是____個單位長度;

(2)將點Cx軸的負方向平移6個單位,它與點_______重合;

(3)直線CEy軸的位置關系是_______;直線CEx軸的位置關系是_______.

【答案】132;2 D;3)平行;垂直.

【解析】

1)利用點的坐標的意義求解.(2)將點Cx軸的負方向平移6個單位得到對應點的坐標為(-3,5),于是可判斷它與點D重合.(3)利用點C和點E的橫坐標相同可判斷直線CE與坐標軸的關系;

解:作圖如下:

1A點到原點的距離是3B點到直線CD的距離是2
2)將點Cx軸的負方向平移6個單位,它與點D重合.
3)直線CEy軸平行,與x軸垂直;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知長方形ABCD在平面直角坐標系中的位置如圖所示,將長方形ABCD沿x軸向左平移到使點C與坐標原點重合后,再沿y軸向下平移到使點D與坐標原點重合,此時點A的坐標是______,點B的坐標是______,點C的坐標是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a是一個長為2m,寬為2n的長方形,沿圖a中虛線用剪刀把它均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)請用兩種不同的方法求圖b中陰影部分的面積:
方法1: ____ (只列式,不化簡)
方法2: ______ (只列式,不化簡)
(2)觀察圖b,寫出代數(shù)式(m+n2,(m-n2,mn之間的等量關系: ______ ;
(3)根據(jù)(2)題中的等量關系,解決如下問題:若a+b=7,ab=5,

則(a-b2= ______ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小河邊有兩個村莊A、B,要在河邊建一自來水廠向A村與B村供水。

(1)若要使水廠到A、B村的距離相等,則應選擇在哪建廠? 

(2)若要使水廠到A、B村的水管最省料,應建在什么地方?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次演講比賽中,評委將從演講內容、演講能力、演講效果三方面為選手打分,各項成績均按百分制,進入決賽的兩名選手的單項成績如下表所示:

選手

演講內容

演講能力

演講效果

85

95

95

95

85

95

(1)如果認為這三方面的成績同等重要,從他們的成績看,誰能勝出?

(2)如果按演講內容占50%,演講能力占40%,演講效果占10%的比例計算甲、乙的平均成績,那么誰將勝出?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=12cm,點C是線段AB上的一點,BC=2AC.動點P從點A出發(fā),以3cm/s的速度向右運動,到達點B后立即返回,以3cm/s的速度向左運動;動點Q從點C出發(fā),以1cm/s的速度向右運動.設它們同時出發(fā),運動時間為ts.當點P與點Q第二次重合時,P,Q兩點停止運動.

(1)AC= cm,BC= cm;

(2)當t為何值時,AP=PQ;

(3)當t為何值時,P與Q第一次相遇;

(4)當t為何值時,PQ=1cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c).

(1)用這樣的兩個三角形構造成如圖(2)的圖形(B,E,C三點在一條直線上),利用這個圖形,求證:a2+b2=c2

(2)當a=1,b=2時,將其中一個直角三角形放入平面直角坐標系中(如圖(3)),使直角頂點與原點重合,兩直角邊a,b分別與x軸、y軸重合.

請在坐標軸上找一點C,使△ABC為等腰三角形.

寫出一個滿足條件的在x軸上的點的坐標:   

寫出一個滿足條件的在y軸上的點的坐標:   ,這樣的點有   個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某科技有限公司準備購進AB兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元,購進A種機器人3個和B種機器人2個共需14萬元,請解答下列問題:

(1)求A、B兩種機器人每個的進價;

(2)已知該公司購買B種機器人的個數(shù)比購買A種機器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組對邊平行,另一組對邊相等且不平行的四邊形叫做等腰梯形.
(1)類比研究
我們在學完平行四邊形后,知道可以從對稱性、邊、角和對角線四個角度對四邊形進行研究,完成表.

四邊形

對稱性

對角線

平行
四邊形

兩組對邊分別平行,兩組對邊分別相等.

兩組對角
分別相等.

對角線互相平分.

等腰
梯形

軸對稱圖形,過平行的一組對邊中點的直線是它的對稱軸.

一組對邊平行,另一組對邊相等.


(2)演繹論證
證明等腰梯形有關角和對角線的性質.
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是對角線.
求證:
證明:
揭示關系
我們可以用圖來揭示三角形和一些特殊三角形之間的關系.

(3)請用類似的方法揭示四邊形、對角線相等的四邊形、平行四邊形、矩形以及等腰梯形之間的關系.

查看答案和解析>>

同步練習冊答案