【題目】 有一種用“☆”定義的新運算,對于任意實數(shù)a,b,都有abb2+2a+1.例如7442+2×7+131

1)已知﹣m3的結(jié)果是﹣4,則m   

2)將兩個實數(shù)2nn2用這種新定義“☆”加以運算,結(jié)果為9,則n的值是多少?

【答案】17;(22

【解析】

1)利用題中新定義列出方程,求出方程的解即可得到m的值;

2)利用新定義分兩種情況列出方程,求出方程的解即可得到n的值.

解:(1)根據(jù)題意可得:﹣m☆3322m+1=﹣4,

解得:m7;

故答案為:7;

2)當(dāng)2n☆(n2)9時,

(n2)2+4n+19,

解得:n2或﹣2,

當(dāng)(n2)☆2n=9時,

4n2+2(n2)+19,

解得:n=﹣2

n=﹣22

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩條拋物線的頂點相同.

1)求拋物線的解析式;

2)點是拋物找在第四象限內(nèi)圖象上的一動點,過點軸,為垂足,求的最大值;

3)設(shè)拋物線的頂點為點,點的坐標(biāo)為,問在的對稱軸上是否存在點,使線段繞點順時針旋轉(zhuǎn)90°得到線段,且點恰好落在拋物線上?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y4x4x軸,y軸分別交于點A,B,點A在拋物線yax2bx3aa0)上,將點B向右平移3個單位長度,得到點C

1)拋物線的頂點坐標(biāo)為 (用含a的代數(shù)式表示)

2)若a1,當(dāng)t1≤xt時,函數(shù)yax2bx3aa0)的最大值為y1,最小值為y2,且y1y22,求t的值;

3)若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BC2AB4,點E,F分別是BC,AD的中點.

(1)求證:△ABE≌△CDF

(2)當(dāng)四邊形AECF為菱形時,求出該菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進(jìn)行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如表:

命中環(huán)數(shù)

6

7

8

9

10

甲命中相應(yīng)環(huán)數(shù)的次數(shù)

0

1

3

1

0

乙命中相應(yīng)環(huán)數(shù)的次數(shù)

2

0

0

2

1

關(guān)于以上數(shù)據(jù),下列說法錯誤的是( 。

A.甲命中環(huán)數(shù)的中位數(shù)是8環(huán)

B.乙命中環(huán)數(shù)的眾數(shù)是9環(huán)

C.甲的平均數(shù)和乙的平均數(shù)相等

D.甲的方差小于乙的方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,扇形OAB的半徑為4,∠AOB90°,P是半徑OB上一動點,Q上一動點.

1)連接AQ、BQPQ,則∠AQB的度數(shù)為   ;

2)當(dāng)POB中點,且PQOA時,求的長;

3)如圖2,將扇形OAB沿PQ對折,使折疊后的恰好與半徑OA相切于點C.若OP3,求點O到折痕PQ的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點B6,0)的直線AB與直線OA相交于點A42),動點M在線段OA和射線AC上運動.

1)求直線AB的解析式.

2)求△OAC的面積.

3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在求出此時點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,BC⊙O于點B,AD⊥BC,垂足為D,OA⊙O的半徑,且OA=3.

(1)求證:AB平分∠OAD;

(2)若點E是優(yōu)弧 上一點,且∠AEB=60°,求扇形OAB的面積.(計算結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABOC的頂點A0,2),點B(﹣40),點O為坐標(biāo)原點,點C在第一象限,若將△AOB沿x軸向右運動得到△EFG(點A、OB分別與點E、F、G對應(yīng)),運動速度為每秒2個單位長度,邊EFOC于點P,邊EGOA于點Q,設(shè)運動時間為t0t2)秒.

1)在運動過程中,線段AE的長度為   (直接用含t的代數(shù)式表示);

2)若t1,求出四邊形OPEQ的面積S

3)在運動過程中,是否存在四邊形OPEQ為菱形?若存在,直接寫出此時四邊形OPEQ的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案