若k<數(shù)學(xué)公式,則雙曲線數(shù)學(xué)公式的圖象經(jīng)過(guò)第________象限.

二、四
分析:首先根據(jù)k的取值范圍確定2k-1的值,然后根據(jù)反比例函數(shù)的性質(zhì)求解即可.
解答:∵k<,
∴2k-1<0,
∴雙曲線的圖象經(jīng)過(guò)第二、四象限,
故答案為:二、四.
點(diǎn)評(píng):本題主要考查反比例函數(shù)的性質(zhì),用到的知識(shí)點(diǎn)為:反比例函數(shù)的比例系數(shù)等于在它上面的點(diǎn)的橫縱坐標(biāo)的積;比例系數(shù)小于0,反比例函數(shù)的兩個(gè)分支在二、四象限.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知雙曲線y=
kx
(k>0)與直線y=k′x交于A,B兩點(diǎn),點(diǎn)P在第一象限.
精英家教網(wǎng)
(1)若點(diǎn)A的坐標(biāo)為(3,2),則k的值為
 
,k′的值為
 
;點(diǎn)B的坐標(biāo)為(
 
);
(2)若點(diǎn)A(m,m-1),P(m-2,m+3)都在雙曲線的圖象上,試求出m的值;
(3)如圖,在(2)小題的條件下:
①過(guò)原點(diǎn)O和點(diǎn)P作一條直線,交雙曲線于另一點(diǎn)Q,試證明四邊形APBQ是平行四邊形;
②如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)P,A,M,N為頂點(diǎn)的四邊形是平行四邊形,試求出點(diǎn)M和點(diǎn)N的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

方程x2+2x-1=0的解可視為函數(shù)y=x+2的圖象與函數(shù)y=
1
x
的圖象交點(diǎn)的橫坐標(biāo),那么方程kx2+x-4=0(k≠0)的兩個(gè)解其實(shí)就是直線
 
與雙曲線
 
的圖象交點(diǎn)的橫坐標(biāo),若這兩個(gè)交點(diǎn)所對(duì)應(yīng)的點(diǎn)(x1,
4
x1
)
,(x2,
4
x2
)
均在直線y=x的同側(cè),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線y=2x與雙曲線y=
k
x
(x>0)交于點(diǎn)A,將直線y=2x向右平移3個(gè)單位后,與雙曲線y=
k
x
(x>0)交于點(diǎn)B,與x軸交于點(diǎn)C.若BC=
1
2
OA
,則k的值為( 。
A、12B、10C、8D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南寧)如圖,直線y=
1
2
x
與雙曲線y=
k
x
(k>0,x>0)交于點(diǎn)A,將直線y=
1
2
x
向上平移4個(gè)單位長(zhǎng)度后,與y軸交于點(diǎn)C,與雙曲線y=
k
x
(k>0,x>0)交于點(diǎn)B,若OA=3BC,則k的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案