【題目】某校組織學(xué)生排球墊球訓(xùn)練,訓(xùn)練前后,對每個學(xué)生進行考核.現(xiàn)隨機抽取部分學(xué)生,統(tǒng)計了訓(xùn)練前后兩次考核成績,并按“A,B,C”三個等次繪制了如圖不完整的統(tǒng)計圖.試根據(jù)統(tǒng)計圖信息,解答下列問題:
(1)抽取的學(xué)生中,訓(xùn)練后“A”等次的人數(shù)是多少?并補全統(tǒng)計圖.
(2)若學(xué)校有600名學(xué)生,請估計該校訓(xùn)練后成績?yōu)椤癆”等次的人數(shù).

【答案】
(1)解:∵抽取的人數(shù)為21+7+2=30,

∴訓(xùn)練后“A”等次的人數(shù)為30﹣2﹣8=20.

補全統(tǒng)計圖如圖:


(2)解:600× =400(人).

答:估計該校九年級訓(xùn)練后成績?yōu)椤癆”等次的人數(shù)是400


【解析】(1)將訓(xùn)練前各等級人數(shù)相加得總?cè)藬?shù),將總?cè)藬?shù)減去訓(xùn)練后B、C兩個等級人數(shù)可得訓(xùn)練后A等級人數(shù);(2)將訓(xùn)練后A等級人數(shù)占總?cè)藬?shù)比例乘以總?cè)藬?shù)可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,正比例函數(shù)與反比例函數(shù)的圖象交于A,B兩點,A點的橫坐標為2AC⊥x軸于點C,連接BC

1)求反比例函數(shù)的解析式;

2)若點P是反比例函數(shù)圖象上的一點,且滿足△OPC△ABC的面積相等,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,BC=7,將矩形ABCD繞點C逆時針旋轉(zhuǎn)90°得到矩形A′B′CD′,點E、F分別是BD、B′D′的中點,則EF的長度為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是矩形ABCD的邊BC、CD的中點,連接AC、AF、EF,AF⊥EF,AC=,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:

(1)設(shè)△APQ的面積為S,當(dāng)t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時,求t的值;′
(3)當(dāng)t為何值時,△APQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B、C表示某旅游景區(qū)三個纜車站的位置,線段AB、BC表示連接纜車站的鋼纜,已知A、B、C三點在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米、310米、710米,鋼纜AB的坡度i1=1:2,鋼纜BC的坡度i2=1:1,景區(qū)因改造纜車線路,需要從A到C直線架設(shè)一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射擊隊為從甲、乙兩名運動員選拔一人參加運動會,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán))

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)由表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的成績是 環(huán).

(2)結(jié)合平均水平與發(fā)揮穩(wěn)定性你認為推薦誰參加比賽更適合,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的情景對話,然后解答問題:

老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

小明:那直角三角形是否存在奇異三角形呢?

小紅:等邊三角形一定是奇異三角形.

(1)根據(jù)奇異三角形的定義,小紅得出命題:等邊三角形一定是奇異三角形,則小紅提出的命題是 .(真命題假命題”)

(2)是奇異三角形,其中兩邊的長分別為、,則第三邊的長為 .

(3)如圖,中,,為斜邊作等腰直角三角形,上方的一點,且滿足.求證:是奇異三角形

查看答案和解析>>

同步練習(xí)冊答案