【題目】如圖,,,,,若點(diǎn)從點(diǎn)出發(fā)以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.

(1)若點(diǎn)恰好在的角平分線上,求出此時(shí)的值;

(2)若點(diǎn)使得時(shí),求出此時(shí)的值.

【答案】(1) 5 (2)

【解析】

(1) PD⊥ABD,依據(jù)題意求出,設(shè)APx,用x表示PC,求出x即可.

(2)當(dāng)PAC上時(shí),作PDABD,由題意可得△ABP為等腰三角形PD也是中線,求出AD,根據(jù),求出AP即可求出時(shí)間t.

(1)如圖,作PD⊥ABD

∵點(diǎn)恰好在的角平分線上

∴PC=PD

設(shè)APx,PC=

根據(jù)勾股定理得到

解得:x=5

∴AP=5

t=5

答:若點(diǎn)恰好在的角平分線上,t5.

(2)PD⊥ABD,

∵ PB+PC=AC

∴ A=PB

AD=BD=5

∵∠A=∠A ∠ADP=∠ACB

,

t=

答:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m),

(1)求圍欄的長(zhǎng)和寬;

(2)能否圍成面積為400 的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱(chēng)軸為x=1,經(jīng)過(guò)點(diǎn)(-10),有下列結(jié)論:①abc0;②a+cb;③3a+c=0;④a+bmam+b)(其中m≠1)其中正確的結(jié)論有( 。

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長(zhǎng)線上,且BF4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( 。

A.3B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD頂點(diǎn)A(0,1),B(1,1);一拋物線y=ax2+bx+c過(guò)點(diǎn)M(﹣1,0)且頂點(diǎn)在正方形ABCD內(nèi)部(包括在正方形的邊上),則a的取值范圍是(  )

A. ﹣2≤a≤﹣1 B. ﹣2≤a≤﹣ C. ﹣1≤a≤﹣ D. ﹣1≤a≤﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=CBAD=CD,對(duì)角線ACBD相交于點(diǎn)O,OEAB,OFCB,垂足分別是EF.求證:OE=OF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家銷(xiāo)售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷(xiāo)售40件,每銷(xiāo)售一件需支付給商場(chǎng)管理費(fèi)5元,未來(lái)一個(gè)月30天計(jì)算,這款商品將開(kāi)展每天降價(jià)1的促銷(xiāo)活動(dòng),即從第一天開(kāi)始每天的單價(jià)均比前一天降低1元,通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷(xiāo)售量增加2件,設(shè)第xx為整數(shù)的銷(xiāo)售量為y件.

直接寫(xiě)出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤(rùn)為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BCAD于點(diǎn)E,F,若BE=3,AF=5,則AC的長(zhǎng)為(

A. B. C. 10D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案