【題目】如圖1,在平面直角坐標系中,,,且.

1)求點A、B的坐標;

2)如圖1,P點為y軸正半軸上一點,連接BP,若,請求出P點的坐標;

3)如圖2,已知,若C點是x軸上一個動點,是否存在點C,使,若存在,請直接寫出所有符合條件的點C的坐標;若不存在,請說明理由.

【答案】(1),;(2);(3)存在,,,理由見解析

【解析】

1)首先根據(jù)等式,可得出的值,即可得出點AB的坐標;

2)首先作軸于點M,設(shè),且,利用,列出等式,即可得出點P的坐標;

3)根據(jù)題意,利用等腰三角形的性質(zhì),即可直接判定C的坐標,有兩種情況,在x正半軸和負半軸上,即可得解.

解:(1

,

2)作軸于點M,如圖所示

設(shè),且

3)存在,,

,

∴當C點在x正半軸上時,坐標為,

C點在x負半軸上時,坐標為

故答案為,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的部分圖象如圖,圖象過點,對稱軸為直線,下列結(jié)論:①;;④當時, 的值隨值的增大而增大;⑤當函數(shù)值時,自變量的取值范圍是.其中正確的結(jié)論有__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個工程隊共同參與一項筑路工程,甲隊單獨施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨完成全部工程比乙隊單獨完成全部工程多用2個月,設(shè)甲隊單獨完成全部工程需個月,則根據(jù)題意可列方程中錯誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶市有五個景區(qū)很受游客喜愛,一旅行社對某小區(qū)居民在暑假期間去以上五個景區(qū)旅游(只選一個景區(qū))的意向做了一次隨機調(diào)查統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.

該小區(qū)居民在這次隨機調(diào)查中被調(diào)查到的人數(shù)是_______人, 想去景區(qū)的人有_________人, 并補全條形統(tǒng)計圖.

被調(diào)查到的居民想去 景區(qū)旅游的人數(shù)最多,若該小區(qū)有居民人,估計去該景區(qū)旅游的居民約有多少人?

小強同學贊假期間計劃與父母從五個景區(qū)中,任選兩個去旅游,求選至兩個景區(qū)的概率,(要求列表求概率)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.

(1)求證:BE是⊙O的切線;

(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,F(xiàn)G=,DF=2BF,求AH的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線ACBD相交于點O,△AOB是等邊三角形,OEBDBC于點ECD1,則CE的長為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O是坐標原點,矩形OACB的頂點A、B分別在軸和軸上,已知OA=5,OB=3,點D的坐標是(0,1),點P從點B出發(fā)以每秒1個單位的速度沿折線BCA的方向運動,當點P與點A重合時,運動停止,設(shè)運動的時間為秒.

1)點P運動到與點C重合時,求直線DP的函數(shù)解析式;

2)求△OPD的面積S關(guān)于的函數(shù)解析式,并寫出對應的取值范圍;

3)點P在運動過程中,是否存在某些位置使△ADP是不以DP為底邊的等腰三角形,若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1ABC為等腰直角三角形,∠ACB=90°,FAC邊上的一個動點(點FAC不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF,AD

探究展示:(1①猜想圖1中線段BFAD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;

②將圖1中的正方形CDEF,繞著點C按順時針方向旋轉(zhuǎn)任意角度α,得到如圖2的情形,圖2BFAC于點H,交AD于點O,請你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.

變式練習:(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,ACB=90°,正方形CDEF改為矩形CDEF,如圖3,且AC=4,BC=3CD=,CF=1,BFAC于點H,交AD于點O,連接BD、AF,請判斷線段BF、AD所在直線的位置關(guān)系,并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠BDC,∠2+∠3180°.

(1) 請你判斷DACE的位置關(guān)系,并說明理由;

(2) DA平分∠BDCCEAE于點E,∠170°,試求∠FAB的度數(shù).

查看答案和解析>>

同步練習冊答案