【題目】如圖①②,A是半徑為12cm的☉O上的定點(diǎn),動(dòng)點(diǎn)PA出發(fā),2π(cm/s)的速度沿圓周逆時(shí)針運(yùn)動(dòng),當(dāng)點(diǎn)P回到A時(shí)立即停止運(yùn)動(dòng).

(1)如圖①,點(diǎn)BOA延長線上一點(diǎn),AB=OA,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí)間為2s時(shí),試證明直線BP是☉O的切線.

(2)如圖②,當(dāng)∠POA=90°時(shí),求點(diǎn)P的運(yùn)動(dòng)時(shí)間.

【答案】(1)見解析;(2)當(dāng)∠POA=90°時(shí),點(diǎn)P運(yùn)動(dòng)的時(shí)間為3 s9 s

【解析】

(1)直線BP與⊙O的位置關(guān)系是相切,根據(jù)已知可證得OPBP,即直線BP與⊙O相切

(2)當(dāng)∠POA=90°時(shí),點(diǎn)P運(yùn)動(dòng)的路程為⊙O周長的 14 34,所以分兩種情況進(jìn)行分析.

(2)如圖,當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為2s時(shí),直線BP與⊙O相切.理由如下:

當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為2s時(shí),點(diǎn)P運(yùn)動(dòng)的路程為4πcm,連接OP,PA,

∵⊙O的周長為24πcm,

∴弧AP的長為⊙O周長的,

∴∠POA=60°;

OP=OA,

∴△OAP是等邊三角形,

OP=OA=AP,OAP=60°;

AB=OA,

AP=AB,

∵∠OAP=APB+B,

∴∠APB=B=30°,

∴∠OPB=OPA+APB=90°,

OPBP,

∴直線BP與⊙O相切;

(2)當(dāng)∠POA=90°時(shí),點(diǎn)P運(yùn)動(dòng)的路程為⊙O周長的,

設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts;

當(dāng)點(diǎn)P運(yùn)動(dòng)的路程為⊙O周長的時(shí),2πt=2π12,

解得t=3;

當(dāng)點(diǎn)P運(yùn)動(dòng)的路程為⊙O周長的時(shí),2πt=2π12,

解得t=9;

∴當(dāng)∠POA=90°時(shí),點(diǎn)P運(yùn)動(dòng)的時(shí)間為3s9s.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°CDAB,垂足為D,BF平分∠ABC,交CD于點(diǎn)E,交AC于點(diǎn)F.若AB10,BC6,則CE的長為( 。

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,GCD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)GC、D不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DEBG的延長線于點(diǎn)H.

1)求證:①△BCG≌△DCE②BH⊥DE.

2)當(dāng)點(diǎn)G運(yùn)動(dòng)到什么位置時(shí),BH垂直平分DE?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F在對(duì)角線BD上,且BFDE

求證:四邊形AECF是菱形.

AB2,BF1,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,BC為O的切線,D為O上的一點(diǎn),CD=CB,延長CD交BA的延長線于點(diǎn)E.

(1)求證:CD為O的切線;

(2)若BD的弦心距OF=1,ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°∠A=30°,點(diǎn)DAB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD

1)如圖1,DEBC的數(shù)量關(guān)系是   ;

2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若點(diǎn)P是線段CB延長線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

京通公交快速通道開通后,為響應(yīng)市政府綠色出行的號(hào)召,家住通州新城的小王上班由自駕車改為乘坐公交車.已知小王家距上班地點(diǎn)18千米.他用乘公交車的方式平均每小時(shí)行駛的路程比他自用駕車的方式平均每小時(shí)行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車方式所用時(shí)間是自駕車方式所用時(shí)間的.小王用自駕車方式上班平均每小時(shí)行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,按如下步驟作圖:

①以點(diǎn)A為圓心,AB長為半徑畫。

②以點(diǎn)C為圓心,CB長為半徑畫弧,兩弧相交于點(diǎn)D;

③連接BD,與AC交于點(diǎn)E,連接AD、CD;

1)求證:;

2)當(dāng)時(shí),猜想四邊形ABCD是什么四邊形,并證明你的結(jié)論;

3)當(dāng),現(xiàn)將四邊形ABCD通過割補(bǔ),拼成一個(gè)正方形,那么這個(gè)正方形的邊長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測(cè)得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),yx成反比例).

1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段yx之間的函數(shù)關(guān)系式.

2)問血液中藥物濃度不低于2微克/毫升的持續(xù)時(shí)間多少小時(shí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案