如圖,點(diǎn)A、E、F、C在同一條直線上,現(xiàn)有下面四個(gè)關(guān)系:
(1)AD=BC,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC,請(qǐng)用其中三個(gè)作為條件,余下的一個(gè)作為結(jié)論編一道數(shù)學(xué)證明題,寫出已知,求證并加以證明.

【答案】分析:根據(jù)全等三角形的判定定理,選擇符合條件的SAS,AAS,ASA,SSS,來(lái)選擇條件和結(jié)論.
解答:解:已知:如圖,點(diǎn)A、E、F、C在同一直線上,AE=CF,∠B=∠D,AD∥BC,
求證:AD=BC.
證明如下:
∵AD∥BC,
∴∠DAC=∠BCA.
∵AE=CF,
∴AF=CE.
又∵∠B=∠D,
∴△ADF≌△CBE (AAS).
∴AD=BC.
點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理.這是一道考查三角形全等的開放性題目,答案可有多種.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A、B在數(shù)軸上,它們所對(duì)應(yīng)的數(shù)分別是-4、
2x+23x-1
,且點(diǎn)A、B關(guān)于原點(diǎn)O對(duì)稱,求x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A為⊙O直徑CB延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)A作⊙O的切線AD,切點(diǎn)為D,過(guò)點(diǎn)D作DE⊥AC,垂足為F,連接精英家教網(wǎng)BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,試求CE的長(zhǎng).
(3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A的坐標(biāo)為(2
2
,0
),點(diǎn)B在直線y=-x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為(  )
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A、B在線段MN上,則圖中共有
 
條線段.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,點(diǎn)O到直線l的距離為3,如果以點(diǎn)O為圓心的圓上只有兩點(diǎn)到直線l的距離為1,則該圓的半徑r的取值范圍是
2<r<4

查看答案和解析>>

同步練習(xí)冊(cè)答案