已知4條線段的總長(zhǎng)度是48cm,且第一條線段的長(zhǎng)是acm,第二條線段比第一條線段的2倍多3cm,第三條線段的長(zhǎng)等于第一、二兩條線段的和.
(1)用含a的代數(shù)式表示第四條線段的長(zhǎng);
(2)當(dāng)時(shí),這4條線段首尾相接能構(gòu)成一個(gè)四邊形嗎?為什么?
(3)已知a為整數(shù),如果這4條線段首尾相接能構(gòu)成一個(gè)四邊形,請(qǐng)你直接寫(xiě)出滿足上述條件的所有a的值.
解:(1)∵第一條線段的長(zhǎng)是acm,第二條線段比第一條線段的2倍多3cm,第三條線段的長(zhǎng)等于第一、二兩條線段的和,
∴第二條線段的長(zhǎng)為(2a+3)cm,
第三條線段的長(zhǎng)為(3a+3)cm,
第四條線段的長(zhǎng)為(42﹣6a)cm;
(2)當(dāng)時(shí),這4條線段分別為,,11,26,
++11<26,
∴這4條線段首尾相接不能構(gòu)成一個(gè)四邊形;
(3)滿足條件的所有a的值:4,5,6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x1,0)、B(x2,0),且x1、x2是關(guān)于x的方程(a2+a)x2-(2a+1)x+1=0的兩根,當(dāng)正整數(shù)a=1,2,…,2010時(shí),分別把線段AB記為A1B1,A2B2,…,A2010B2010,則這2010條線段的總長(zhǎng)度和為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知4條線段的總長(zhǎng)度是48cm,且第一條線段的長(zhǎng)是acm,第二條線段比第一條線段的2倍多3cm,第三條線段的長(zhǎng)等于第一、二兩條線段的和.
(1)用含a的代數(shù)式表示第四條線段的長(zhǎng);
(2)當(dāng)a=
83
時(shí),這4條線段首尾相接能構(gòu)成一個(gè)四邊形嗎?為什么?
(3)已知a為整數(shù),如果這4條線段首尾相接能構(gòu)成一個(gè)四邊形,請(qǐng)你直接寫(xiě)出滿足上述條件的所有a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知4條線段的總長(zhǎng)度是48cm,且第一條線段的長(zhǎng)是acm,第二條線段比第一條線段的2倍多3cm,第三條線段的長(zhǎng)等于第一、二兩條線段的和.
(1)用含a的代數(shù)式表示第四條線段的長(zhǎng);
(2)當(dāng)數(shù)學(xué)公式時(shí),這4條線段首尾相接能構(gòu)成一個(gè)四邊形嗎?為什么?
(3)已知a為整數(shù),如果這4條線段首尾相接能構(gòu)成一個(gè)四邊形,請(qǐng)你直接寫(xiě)出滿足上述條件的所有a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省武漢市中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:填空題

已知點(diǎn)A(x1,0)、B(x2,0),且x1、x2是關(guān)于x的方程(a2+a)x2-(2a+1)x+1=0的兩根,當(dāng)正整數(shù)a=1,2,…,2010時(shí),分別把線段AB記為A1B1,A2B2,…,A2010B2010,則這2010條線段的總長(zhǎng)度和為    

查看答案和解析>>

同步練習(xí)冊(cè)答案