△ABC和△DBE是繞點(diǎn)B旋轉(zhuǎn)的兩個(gè)相似三角形,其中∠ABC與∠DBE、∠A與∠D為對(duì)應(yīng)角.
(1)如圖1,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點(diǎn)B、C、D在同一條直線(xiàn)上的位置時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段AD與線(xiàn)段EC的關(guān)系;
(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個(gè)三角形旋轉(zhuǎn)到如圖2的位置時(shí),試確定線(xiàn)段AD與線(xiàn)段EC的關(guān)系,并說(shuō)明理由;
(3)若△ABC和△DBE為如圖3的兩個(gè)三角形,且∠ACB=α,∠BDE=β,在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線(xiàn)AD與EC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請(qǐng)說(shuō)明理由.

【答案】分析:(1)連接AD、CE,然后證得△ABD≌△BCE,根據(jù)所得的等角和等邊來(lái)判斷AD、EC的關(guān)系.
(2)連接AD、EC并延長(zhǎng),設(shè)交點(diǎn)為點(diǎn)F,根據(jù)已知條件,易證得△ABD∽△CBE,得AB:BC=BD:BE,而∠1、∠2同為∠3的余角,則可證得△ABD=△CBE,得∠5=∠7+30°,而∠6=120°-∠5,由此可證得∠7+∠6=90°,即AD⊥CE.
(3)根據(jù)上面的求解過(guò)程可知:在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線(xiàn)AD與EC夾角的度數(shù)不改變,解題思路和方法同(2).
解答:解:(1)線(xiàn)段AD與線(xiàn)段CE的關(guān)系是AD⊥EC,AD=EC;(2分)
理由:連接AD、CE;
∵△ABC、△BED都是等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠EBD=90°,
∴△ABD≌△CBE,
∴AD=CE,∠DAB=∠BCE;
∵∠BEC+∠BCE=90°,
∴∠BEC+∠DAE=90°,即AD⊥CE;
故線(xiàn)段AD與線(xiàn)段EC的關(guān)系是AD⊥EC,AD=EC.

(2)如圖2,連接AD、EC并延長(zhǎng),設(shè)交點(diǎn)為點(diǎn)F;
∵△ABC∽△DBE,
,

∵∠ABC=∠DBE=90°,
∴∠1+∠3=90°,∠2+∠3=90°
∴∠1=∠2
∴△ABD∽△CBE.(4分)

在Rt△ACB中,,∵
.(5分)
又∵∠DBE=90°,∠DEB=30°,
∴∠4=60°,
∴∠5+∠6=120°.
∵△ABD∽△CBE,
∴∠5=∠CEB=30°+∠7,
∴∠7=∠5-30°,∠6=120°-∠5,
∴∠7+∠6=90°,
∴∠DFE=90°
即AD⊥CE.(6分)

(3)在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線(xiàn)AD與EC夾角的度數(shù)不改變,且∠AFE=(180-α-β)度.(8分)
點(diǎn)評(píng):本題考查了圖形的旋轉(zhuǎn)變化以及相似三角形的判定和性質(zhì),理清圖中角與角之間的關(guān)系,是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

△ABC和△DBE是繞點(diǎn)B旋轉(zhuǎn)的兩個(gè)相似三角形,其中∠ABC與∠DBE、∠A與∠D為對(duì)應(yīng)角.
(1)如圖1,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點(diǎn)B、C、D在同一條直線(xiàn)上的位置時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段AD與線(xiàn)段EC的關(guān)系;
(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個(gè)三角形旋轉(zhuǎn)到如圖2的位置時(shí),試確定線(xiàn)段AD與線(xiàn)段EC的關(guān)系,并說(shuō)明理由;
(3)若△ABC和△DBE為如圖3的兩個(gè)三角形,且∠ACB=α,∠BDE=β,在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線(xiàn)AD與EC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

△ABC和△DBE是繞點(diǎn)B旋轉(zhuǎn)的兩個(gè)相似三角形,其中∠ABC與∠DBE、∠A與∠D為對(duì)應(yīng)角.
(1)如圖1,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點(diǎn)B、C、D在同一條直線(xiàn)上的位置時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段AD與線(xiàn)段EC的關(guān)系;
(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個(gè)三角形旋轉(zhuǎn)到如圖2的位置時(shí),試確定線(xiàn)段AD與線(xiàn)段EC的關(guān)系,并說(shuō)明理由;
(3)若△ABC和△DBE為如圖3的兩個(gè)三角形,且∠ACB=α,∠BDE=β,在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線(xiàn)AD與EC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京期末題 題型:解答題

△ABC和△DBE是繞點(diǎn)旋轉(zhuǎn)的兩個(gè)相似三角形,其中∠ABC與∠DBE、∠A與∠D為對(duì)應(yīng)角。
(1)如圖1,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點(diǎn)B、C、D在同一條直線(xiàn)上的位置時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段AD與線(xiàn)段EC的關(guān)系;
(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個(gè)三角形旋轉(zhuǎn)到如圖2的位置時(shí),試確定線(xiàn)段AD與EC線(xiàn)段的關(guān)系,并說(shuō)明理由。
(3)若△ABC和△DBE為如圖3的兩個(gè)三角形,且∠ACB=,∠BDE=,在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線(xiàn)AD與EC夾角的度數(shù)是否改變?若不改變,直接用含、的式子表示夾角的度數(shù);若改變,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京市昌平區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

△ABC和△DBE是繞點(diǎn)B旋轉(zhuǎn)的兩個(gè)相似三角形,其中∠ABC與∠DBE、∠A與∠D為對(duì)應(yīng)角.
(1)如圖1,若△ABC和△DBE分別是以∠ABC與∠DBE為頂角的等腰直角三角形,且兩三角形旋轉(zhuǎn)到使點(diǎn)B、C、D在同一條直線(xiàn)上的位置時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段AD與線(xiàn)段EC的關(guān)系;
(2)若△ABC和△DBE為含有30°角的直角三角形,且兩個(gè)三角形旋轉(zhuǎn)到如圖2的位置時(shí),試確定線(xiàn)段AD與線(xiàn)段EC的關(guān)系,并說(shuō)明理由;
(3)若△ABC和△DBE為如圖3的兩個(gè)三角形,且∠ACB=α,∠BDE=β,在繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,直線(xiàn)AD與EC夾角的度數(shù)是否改變?若不改變,直接用含α、β的式子表示夾角的度數(shù);若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案