【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實(shí)數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求n2﹣4n的最大值和最小值.
【答案】
(1)解:對(duì)于一元二次方程x2﹣(m+1)x+ (m2+1)=0,
△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,
∵方程有實(shí)數(shù)根,
∴﹣(m﹣1)2≥0,
∴m=1.
(2)解:由(1)可知y=x2﹣2x+1=(x﹣1)2,
圖象如圖所示:
平移后的解析式為y=﹣(x+2)2+2=﹣x2﹣4x﹣2.
(3)解:由 消去y得到x2+6x+n+2=0,
由題意△≥0,
∴36﹣4n﹣8≥0,
∴n≤7,
∵n≤m,m=1,
∴1≤n≤7,
令y′=n2﹣4n=(n﹣2)2﹣4,
∴n=2時(shí),y′的值最小,最小值為﹣4,
n=7時(shí),y′的值最大,最大值為21,
∴n2﹣4n的最大值為21,最小值為﹣4.
【解析】(1)由題意△≥0,列出不等式,解不等式即可;(2)畫出翻折.平移后的圖象,根據(jù)頂點(diǎn)坐標(biāo)即可寫出函數(shù)的解析式;(3)首先確定n的取值范圍,利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;
【考點(diǎn)精析】掌握求根公式和二次函數(shù)圖象的平移是解答本題的根本,需要知道根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過(guò)點(diǎn)D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(Ⅱ)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(Ⅲ)若點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在坐標(biāo)平面內(nèi),以線段MN為對(duì)角線作正方形MPNQ,請(qǐng)寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(x,y),點(diǎn)A′(x′,y′),若x′=x+m,y′=y+n,即點(diǎn)A′(x+m,y+n),則表示點(diǎn)A到點(diǎn)A′的一個(gè)平移.例如:點(diǎn)A(x,y),點(diǎn)A′(x′,y′),若x′=x+1,y′=y-2,則表示點(diǎn)A向右平移1個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度得到點(diǎn)A′.
根據(jù)上述定義,探究下列問(wèn)題:
(1)已知點(diǎn)A(x,y),A′(x-3,y),則線段AA′的長(zhǎng)度是多少;
(2)已知點(diǎn)A(x,y),A′(x+2,y-1),則線段AA′的長(zhǎng)度是多少;
(3)長(zhǎng)方形AOCB在平面直角坐標(biāo)系中的位置如圖所示,A(0,2),C(4,0),點(diǎn)A′(x′,y′),若x′=x+m,y′=y-2m(m均為正數(shù)),點(diǎn)A′(x′,y′)能否在△OCB的直角邊上?若能,求m的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探索:
(1)已知一個(gè)分?jǐn)?shù),如果分子、分母同時(shí)增加1,分?jǐn)?shù)的值是增大還是減小?請(qǐng)說(shuō)明你的理由.
(2)若正分?jǐn)?shù)中分子和分母同時(shí)增加2,3,…,k(整數(shù)k>0),情況如何?
(3)請(qǐng)你用上面的結(jié)論解釋下面的問(wèn)題:
建筑學(xué)規(guī)定:民用住宅窗戶面積必須小于地板面積,但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比應(yīng)不小于10%,并且這個(gè)比值越大,住宅的采光條件越好,問(wèn):同時(shí)增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過(guò)點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過(guò)點(diǎn)D作DE⊥BC交AB于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處.當(dāng)△AEF為直角三角形時(shí),BD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF;
(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,甲、乙兩家商店以同樣價(jià)格銷售相同的商品,兩家優(yōu)惠方案分別為:甲店一次性購(gòu)物中超過(guò)200元后的價(jià)格部分打七折;乙店一次性購(gòu)物中超過(guò)500元后的價(jià)格部分打五折,設(shè)商品原價(jià)為x元(x≥0),購(gòu)物應(yīng)付金額為y元.
(1)求在甲商店購(gòu)物時(shí)y與x之間的函數(shù)關(guān)系;
(2)兩種購(gòu)物方式對(duì)應(yīng)的函數(shù)圖象如圖所示,求交點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象,請(qǐng)直接寫出“五一”期間選擇哪家商店購(gòu)物更優(yōu)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長(zhǎng)分別為40、50、60.其三條角平分線交于點(diǎn)O,則S△ABO:S△BCO:S△CAO= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com