【題目】如圖,∠ABD和∠BDC的平分線交于E , BE交CD于點F , ∠1+∠2=90°.
(1)試說明:AB∥CD;
(2)若∠2=25°,求∠BFC的度數(shù).
【答案】
(1)
證明:(1)∵BE、DE平分∠ABD、∠BDC,
∴∠1=∠ABD,∠2=∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁內(nèi)角互補,兩直線平行)
(2)
∵∠1+∠2=90°,∠2=25°,
∴∠ABF=∠1=65°,
∵AB∥CD,
∴∠ABF+∠BFC=180°,
則∠BFC=115°.
【解析】(1)從角平分線的性質(zhì)可得∠1=∠ABD,∠2=∠BDC;根據(jù)∠1+∠2=90°,得∠ABD+∠BDC=180°,從而得AB∥CD;
(2)根據(jù)平行線的性質(zhì)去做.
【考點精析】本題主要考查了平行線的判定與性質(zhì)和角平分線的性質(zhì)定理的相關(guān)知識點,需要掌握由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì);定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】病人按規(guī)定的劑量服用某種藥物,測得服藥后2小時,每毫升血液中的含藥量達到最大值為4毫克,已知服藥后,2小時前每毫升血液中的含藥量y(毫克)與時間x(小時)成正比例,2小時后y與x成反比例(如圖所示).根據(jù)以上信息解答下列問題.
(1)求當0≤x≤2時,y與x的函數(shù)關(guān)系式;
(2)求當x>2時,y與x的函數(shù)關(guān)系式;
(3)若每毫升血液中的含藥量不低于2毫克時治療有效,則服藥一次,治療疾病的有效時間是多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,(1)若甲單獨完成需要多少天?(2)從節(jié)省資金的角度考慮,應(yīng)該選擇哪個工程隊?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課堂練習中,王莉同學做了如下4道因式分解題,你認為王莉做得不夠完整的一道是( )
A. x3-x=x(x2-1)
B. x2+2xy+y2=(x+y)2
C. x2y-xy2=xy(x-y)
D. ab2-6ab+9a=a(b-3)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,一張四邊形紙片ABCD,∠A=50°,∠C=150°.若將其按照圖②所示方式折疊后,恰好MD′//AB,ND′//BC,則∠D的度數(shù)為( )
A.70°
B.75°
C.80°
D.85°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于D,垂足為E,若∠A=30°,CD=3.
(1)求∠BDC的度數(shù).
(2)求AC的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com