若點A(2,4)在直線y=kx-2上,則k=


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    0
B
分析:把點的坐標代入直線,即可求出k值.
解答:根據(jù)題意:2k-2=4,
解得k=3.
故選B.
點評:本題主要考查點在直線上的含義,點在直線上,則點的坐標滿足函數(shù)解析式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點D是線段OC上一點,過點D作DE⊥AD交直線BC于點E,以A、D、E為頂點作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點A坐標為(0,4),點C坐標為(7,0).
①當點D的坐標為(5,0)時,拋物線y=ax2+bx+c過A、F、B三點,求點F的坐標及a、b、c的值;
②若點D(k,0)是線段OC上任意一點,點F是否還在①中所求的拋物線上?如果在,請說明理由;如果不在,請舉反例說明;
(3)若點A的坐標是(0,m),點C的坐標是(n,0),當點D在線段OC上運動時,是否也存在一條拋物線,使得點F都落在該拋物線上?若存在,請直接用含m精英家教網、n的代數(shù)式表示該拋物線;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點,過點E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標系中,使點O與原點重合,OC在x軸正半軸上,點A、B在第一象限內.
(1)求點E的坐標;
(2)點P為線段EF上的一個動點,過點P作PM⊥EF交OC于點M,過M作MN∥AO交折線ABC于點N,連接PN.設PE=x.△PMN的面積為S.
①求S關于x的函數(shù)關系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點D與點C重合時停止(如圖2).設運動時間為t秒,運動后的直角梯形為E′D′G′H′;探究:在運動過程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時間t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若動點P從A點出發(fā),以每秒4cm的速度沿線段A、DC向C點運動;動點Q從C點出發(fā)以每秒5cm的速度沿CB向B點運動 當Q點到達B點時,動點P、Q同時停止運動.設點P、Q同時出發(fā),并運動了t秒.
(1)當t=
4
9
4
9
秒時,四邊形PQCD是平行四邊形;
(2)當t=
7
4
7
4
秒時,PQ⊥DC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若在方格(每小格正方形邊長為1m)上沿著網格線平移,規(guī)定:沿水平方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿豎直方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”.例如:點A按“平移量”{1,4}可平移至點B.
(1)從點C按“平移量”{
-2
-2
,
-1
-1
}可平移到點B;
(2)若點B依次按“平移量”{4,-3}、{-2,1}平移至點D,
①請在圖中標出點D;(用黑色水筆在答題卡上作出點D)
②如果每平移1m需要2.5秒,那么按此方法從點B移動至點D需要多少秒?
③觀察點D的位置,其實點B也可按“平移量”{
2
2
,
-2
-2
}直接平移至點D;觀察這兩種平移的“平移量”,猜想:點E依次按“平移量”{2a,3b}、{-5a,b}、{a,-5b}平移至點F,則相當于點E按“平移量”{
-2a
-2a
-b
-b
}直接平移至點F.

查看答案和解析>>

同步練習冊答案