【題目】閱讀下面材料:

如圖1,已知線段ABCD相交于點(diǎn)O,且AB=CD,請(qǐng)你利用所學(xué)知識(shí)把線段AB、CD轉(zhuǎn)移到同一三角形中。

   

小強(qiáng)同學(xué)利用平移知識(shí)解決了此問題,具體做法如下

如圖2,延長(zhǎng)OD至點(diǎn)E,使DE=CO,延長(zhǎng)OA至點(diǎn)F,使AF=OB,連接EF,則△OEF為所求的三角形。

請(qǐng)你仔細(xì)體會(huì)小強(qiáng)的做法,探究并解答下列問題:

如圖3,長(zhǎng)為2的三條線段AA′,BB′,CC′交于一點(diǎn)O,并且∠B′OA=∠C′OB=∠A′OC=60°;

1)請(qǐng)你把三條線段AA′BB′,CC′ 轉(zhuǎn)移到同一三角形中。(簡(jiǎn)要敘述畫法)

2連接AB′、BC′、CA′,如圖4,設(shè)△AB′O、△BC′O、△CA′O的面積分別為S1、S2、S3,則S1+S2+S3________(填“>”“<”“=”)。

    

【答案】

【解析】試題分析:1)根據(jù)材料得出延長(zhǎng)OA至點(diǎn)E,使AE=A′O;延長(zhǎng)OB′至點(diǎn)F,使B′F=OB;連接EF,則△OEF為所求;
2)根據(jù)平移的性質(zhì)首先得出,再利用圖象得出S1+S2+S3SEOF

試題解析:

1)如圖所示:畫法:延長(zhǎng)OA至點(diǎn)E,使AE=AO;延長(zhǎng)OB至點(diǎn)F,使BF=OB;連接EF,則OEF為所求的三角形。

2長(zhǎng)為2的三條線段AA,BB,CC交于一點(diǎn)O,

并且BOA=COB=AOC=60°;

∴△OEF為邊長(zhǎng)為2的等邊三角形,,

EF上截取EQ=CO,則QF=CO

可得ACO≌△QEA,BFQ≌△OBC,

如圖所示:

。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字后,回答問題:

甲、乙兩人同時(shí)解答題目:化簡(jiǎn)并求值:,其中a=5甲、乙兩人的解答不同;

甲的解答是:;

乙的解答是:

1  的解答是錯(cuò)誤的.

2)錯(cuò)誤的解答在于未能正確運(yùn)用二次根式的性質(zhì):  

3)模仿上題解答:化簡(jiǎn)并求值:,其中a=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一些相同的小立方塊搭一個(gè)幾何體,使它從正面看和從上面看的形狀圖如圖所示,從上面看的形狀圖中小正方形中的字母表示在位置的小立方塊的個(gè)數(shù),解答下列問題.

1各表示幾?

2)當(dāng)時(shí),畫出這個(gè)幾何體從左面看到的形狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中五次行駛紀(jì)錄如下。(單位:千米)

第一次

第二次

第三次

第四次

第五次

4

7

9

7

-2

1)求第二次記錄時(shí)距A地多遠(yuǎn)?

2)在第______次紀(jì)錄時(shí)距A地最遠(yuǎn)。

3)若每千米耗油0.8升,問共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳中,一張桌子可以坐6人,如果把多張桌子擺在一起,可以有以下兩種擺放方式.

(1)當(dāng)有5張桌子時(shí),第一種擺放方式能坐  人,第二種擺放方式能坐  人,

(2)當(dāng)有n張桌子時(shí),第一種擺放方式能坐  人,第二種擺放方式能坐  人,

(3)一天中午餐廳要接待98位顧客共同就餐(即桌子要擺在一起),但餐廳只有25張這樣的餐桌,若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a,bc是直角三角形的三條邊長(zhǎng),斜邊c上的高的長(zhǎng)是h,給出下列結(jié)論

a2,b2c2的長(zhǎng)為邊的三條線段能組成一個(gè)三角形

, 的長(zhǎng)為邊的三條線段能組成一個(gè)三角形

a+b,c+h,h的長(zhǎng)為邊的三條線段能組成直角三角形

, 的長(zhǎng)為邊的三條線段能組成直角三角形

其中所有正確結(jié)論的序號(hào)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(-12-20+-8-15
2-3;
3-30×();
4)(-62×(-22;

519+-1.5)÷(-32
62

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動(dòng)點(diǎn),P是線段CN上一點(diǎn),過點(diǎn)P分別作PQ∥OA交OB于點(diǎn)Q,PM∥OB交OA于點(diǎn)M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當(dāng)點(diǎn)N在邊OB上運(yùn)動(dòng)時(shí),四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請(qǐng)說明理由.

②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一根繩子對(duì)折以后用線段表示,現(xiàn)從處將繩子剪斷,剪斷后的各段繩子中最長(zhǎng)的一段為,若,則這條繩子的原長(zhǎng)為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案