【題目】如圖,△ABC中,AB = AC,AD、AE分別是∠BAC∠BAC外角的平分線,

1)求證:DA⊥AE;

2)試判斷ABDE是否相等?并證明你的結(jié)論.

【答案】1)證明見解析;(2AB=DE.證明見解析.

【解析】

試題(1)、根據(jù)角平分線的性質(zhì)可得∠BAD=∠BAC,∠BAE=∠BAF,根據(jù)平角的性質(zhì)可以得出結(jié)論;(2)、根據(jù)等于三角形的三線合一定理說明∠ADB=90°,根據(jù)三個(gè)角是直角的四邊形為矩形得出ADBE為矩形,最后根據(jù)矩形的對(duì)角線的性質(zhì)說明結(jié)論.

試題解析:(1)∵ADAE分別為角平分線 ∴∠BAD=∠BAC,∠BAE=∠BAF

∵∠BAC+∠BAF=180° ∴∠BAD+∠BAE=(∠BAC+∠BAF)=90° ∴DA⊥AE

、∵AB=AC AD為角平分線 ∴AD⊥BC ∠ADB=90°

∵BE⊥AE ∴∠BEA=90° ∵∠DAE=90° ∴四邊形ADBE為矩形 ∴AB=DE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的AB兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1800

第二周

4臺(tái)

10臺(tái)

3100

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)

1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?

3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊長(zhǎng)、寬、高分別為6cm、4cm、3cm的長(zhǎng)方體木塊,一只螞蟻要從長(zhǎng)方體木塊的一個(gè)頂點(diǎn)A處,沿著長(zhǎng)方體的表面到長(zhǎng)方體上和A相對(duì)的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長(zhǎng)是( )

A. cm B. cm C. cm D. 9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:

①<1.493>=1;

②<2x>=2<x>;

,則實(shí)數(shù)x的取值范圍是;

當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有;

。

其中,正確的結(jié)論有  (填寫所有正確的序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式,屬于二元一次方程的個(gè)數(shù)有( 。

①xy+2xy7;②4x+1xy;+y5;④xy;⑤x2y22;⑥6x2y⑦x+y+z1;⑧yy1)=2x2y2+xy

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長(zhǎng),交AD延長(zhǎng)線于點(diǎn)F,連接BDCF.

(1)求證:△CEB≌△DEF;

(2)若AB=BF,試判斷四邊形BCFD的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個(gè)圖形有6個(gè)小圓,第2個(gè)圖形有10個(gè)小圓,第3個(gè)圖形有16個(gè)小圓,第4個(gè)圖形有24個(gè)小圓,…,依次規(guī)律,第9個(gè)圖形圓的個(gè)數(shù)為(

A.94B.85C.84D.76

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)經(jīng)驗(yàn))三角形的中線的性質(zhì):三角形的中線等分三角形的面積.

(經(jīng)驗(yàn)發(fā)展)面積比和線段比的聯(lián)系:

1)如圖1MABCAB上一點(diǎn),且BM=2AM.若ABC的面積為a,若CBM的面積為S,則S=_______(用含a的代數(shù)式表示)

(結(jié)論應(yīng)用)(2)如圖2,已知CDE的面積為1,,求ABC的面積.

(遷移應(yīng)用)(3)如圖3.在ABC中,MAB的三等分點(diǎn)()NBC的中點(diǎn),若ABC的面積是1,請(qǐng)直接寫出四邊形BMDN的面積為________

查看答案和解析>>

同步練習(xí)冊(cè)答案