【題目】如圖,把一矩形紙片OABC放入平面直角坐標(biāo)系xoy中,使OA,OC分別落在x軸、y軸上,現(xiàn)將紙片OABC沿OB折疊,折疊后點A落在點A'的位置,若OA=1,OB=2,則點A'的坐標(biāo)為( )

A.
B.
C.(
D.(

【答案】B
【解析】解:過A′作A′D⊥x軸與點D.

在直角△OAB中,∵cos∠BOA= =

∴∠BOA=60°

∴∠A′OB=∠BOA=60°

∴∠A′OD=60°

在直角△A′OD中,OD=OA′cos60°=1× =

A′D=A′Osin60°=1× =

∴點A'的坐標(biāo)為(﹣ ).
故B符合題意.

所以答案是:B.

【考點精析】關(guān)于本題考查的翻折變換(折疊問題),需要了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅家有一塊L形的菜地,要把L形的菜地按如圖所示分成兩塊面積相等的梯形,種上不同的蔬菜.這兩個梯形的上底都是a m,下底都是b m,高都是(b-a) m.

(1)求小紅家這塊L形菜地的面積.(用含a、b的代數(shù)式表示

(2)a2+b2=15,ab=5,求小紅家這塊L形菜地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學(xué)生對四種項目的喜歡情況,隨機調(diào)查了該校m名學(xué)生最喜歡的一種項目(每名學(xué)生必選且只能選擇四種活動項目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計圖表:
學(xué)生最喜歡的活動項目的人數(shù)統(tǒng)計表

項目

學(xué)生數(shù)(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%


根據(jù)圖表中提供的信息,解答下列問題:
(1)m= , n= , p=;
(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:

設(shè)(其中a、b、m、n均為整數(shù)),則有.

.這樣小明就找到了一種把類似的式子化為平方式的方法。

請你仿照小明的方法探索并解決下列問題:(a,b,m,n均為正整數(shù))

(1),用含m、n的式子分別表示a、b,得:a=___,b=___;

(2)當(dāng)a=7,n=1時,填空:7+ =( +2

(3)若,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.

1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).

2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)與放水時間t()有如下關(guān)系:

放水時間()

1

2

3

4

...

水池中水量(m)

38

36

34

32

...

下列結(jié)論中正確的是

A. yt的增加而增大B. 放水時間為15分鐘時,水池中水量為8m3

C. 每分鐘的放水量是2m3D. yt之間的關(guān)系式為y=38-2t

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個等腰三角形ABD,AB=AD.

(1)請你用尺規(guī)作圖法作出點A關(guān)于軸BD的對稱點C;(不用寫作法,但保留作圖痕跡)
(2)連接(1)中的BC和CD,請判斷四邊形ABCD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為24的等邊三角形,CDE是等腰三角形,其中DCDE10,∠CDE120°,點EBC邊上,點FBE的中點,連接AD、DF、AF,則AF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).

(1)點C的坐標(biāo)是
(2)將△ABC沿x軸正方向平移得到△A′B′C′,且B,C兩點的對應(yīng)點B′,C′恰好落在反比例函數(shù)y= 的圖象上,求該反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案