【題目】如圖,已知拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),點(diǎn)C是拋物線(xiàn)與y軸的交點(diǎn).
(1)求拋物線(xiàn)的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)M,使△BCM是等腰三角形,若存在請(qǐng)直接寫(xiě)出點(diǎn)M坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
【答案】(1) y=x2﹣2x﹣3,頂點(diǎn)坐標(biāo)為(1,﹣4).(2) ﹣4≤y<0;(3)存在, 點(diǎn)M的坐標(biāo)為(1, )或(1, )或(1, )或(1, )或(1,-1).
【解析】試題分析:
(1)把點(diǎn)A、B的坐標(biāo)代入y=x2+bx+c中,列方程組解得b、c的值即可得到拋物線(xiàn)的解析式;把所得解析式配方化為“頂點(diǎn)式”可得頂點(diǎn)坐標(biāo);
(2)根據(jù)(1)中所得拋物線(xiàn)的頂點(diǎn)坐標(biāo)和點(diǎn)B的坐標(biāo)結(jié)合圖形可得本題答案;
(3)設(shè)點(diǎn)M的坐標(biāo)為(1,m),由兩點(diǎn)間距離公式(或勾股定理),表達(dá)出:CB2、CM2、BM2,再分①CB2=CM2;②CB2=BM2;③CM2=BM2三種情況分別列出關(guān)于“m”的方程,解方程即可可得到答案.
試題解析:
(1)把A(﹣1,0)、B(3,0)分別代入y=x2+bx+c中,
得: ,解得: ,
∴拋物線(xiàn)的解析式為y=x2﹣2x﹣3.
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴拋物線(xiàn)頂點(diǎn)坐標(biāo)為(1,﹣4).
(2)∵在y=x2﹣2x﹣3中,當(dāng)時(shí), ;當(dāng)時(shí), ;拋物線(xiàn)頂點(diǎn)坐標(biāo)為(1,-4),
∴當(dāng)0<x<3時(shí), 的取值范圍為:﹣4≤y<0;.
(3)存在.由(1)和(2)可知,拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn),點(diǎn)C的坐標(biāo)為(0,-3),
∴可設(shè)點(diǎn)M的坐標(biāo)為(1,m),由此可得:CB2=18;CM2= ;BM2=.
①當(dāng)CB2=CM2時(shí),有,解得: ;
②當(dāng)CB2=BM2時(shí),有,解得: ;
③當(dāng)CM2=BM2時(shí),有,解得: ;
綜上所述,存在點(diǎn)M使△BCM是等腰三角形,M的坐標(biāo)為: 、、、、.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明
如圖,點(diǎn)E在直線(xiàn)DF上,點(diǎn)B在直線(xiàn)AC上,若∠AGB=∠EHF,∠C=∠D.
求證:∠A=∠F.
證明:∵∠AGB=∠EHF
∠AGB=___________(對(duì)頂角相等)
∴∠EHF=∠DGF
∴DB∥EC(____________________________________)
∴∠_________=∠DBA(________________________________)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥_______(__________________________________)
∴∠A=∠F(__________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線(xiàn)段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線(xiàn)段MN的長(zhǎng);
(2)若C為線(xiàn)段AB上任一點(diǎn),滿(mǎn)足AC+CB=a cm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由;
(3)若C在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且滿(mǎn)足AC﹣BC=b cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,港口A位于燈塔C的正南方向,港口B位于燈塔C的南偏東60°方向,且港口B在港口A的正東方向的135公里處.一艘貨輪在上午8時(shí)從港口A出發(fā),勻速向港口B航行.當(dāng)航行到位于燈塔C的南偏東30°方向的D處時(shí),接到公司要求提前交貨的通知,于是提速到原來(lái)速度的1.2倍,于上午12時(shí)準(zhǔn)時(shí)到達(dá)港口B,順利完成交貨.求貨輪原來(lái)的速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上1與1之間的有理數(shù)有( )
A.無(wú)數(shù)個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)多項(xiàng)式的次數(shù)是6,那么這個(gè)多項(xiàng)式的任何一項(xiàng)的次數(shù)都( )
A.小于6B.等于6C.不大于6D.不小于6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直線(xiàn)上順次取 A,B,C 三點(diǎn),分別以 AB,BC 為邊長(zhǎng)在直線(xiàn)的同側(cè)作正三角形, 作得兩個(gè)正三角形的另一頂點(diǎn)分別為 D,E.
(1)如圖①,連結(jié) CD,AE,求證:CD=AE;
(2)如圖②,若 AB=1,BC=2,求 DE 的長(zhǎng);
(3)如圖③,將圖②中的正三角形 BCE 繞 B 點(diǎn)作適當(dāng)?shù)男D(zhuǎn),連結(jié) AE,若有 DE2+BE2= AE2,試求∠DEB 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品A的零售價(jià)為每件900元,為了適應(yīng)市場(chǎng)競(jìng)爭(zhēng),商店按零售價(jià)的九折優(yōu)惠后,再讓利40元銷(xiāo)售,仍可獲利10%.
(1)這種商品A的進(jìn)價(jià)為多少元?
(2)現(xiàn)有另一種商品B進(jìn)價(jià)為600元,每件商品B也可獲利10%.對(duì)商品A和B共進(jìn)貨100件,要使這100件商品共獲純利6670元,則需對(duì)商品A、B分別進(jìn)貨多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線(xiàn)AB∥CD
(1)如圖1,點(diǎn)E在直線(xiàn)BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點(diǎn)E在直線(xiàn)BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點(diǎn)E在直線(xiàn)BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)寫(xiě)出你的猜想,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com