【題目】如圖,已知∠AOB=90°,點A繞點O順時針旋轉(zhuǎn)后的對應(yīng)點A1落在射線OB上,點A繞點A1順時針旋轉(zhuǎn)后的對應(yīng)點A2落在射線OB上,點A繞點A2順時針旋轉(zhuǎn)后的對應(yīng)點A3落在射線OB上,…,連接AA1,AA2,AA3…,依此作法,則∠AA2A3=___,∠AAnAn+1等于___度.(用含n的代數(shù)式表示,n為正整數(shù)).
【答案】157.5°, 180–.
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得OA=OA1,則根據(jù)等腰三角形的性質(zhì)得∠AA1O=,同理得到A1A=A1A2,根據(jù)等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AA2A1=∠AA1O=,同樣得到∠AA3A2=,于是可推廣得到∠AAnAn-1=,然后利用鄰補(bǔ)角的定義得到∠AAnAn+1=180°-.
∵點A繞點O順時針旋轉(zhuǎn)后的對應(yīng)點A1落在射線OB上,
∴OA=OA1,
∴∠AA1O=,
∵點A繞點A1順時針旋轉(zhuǎn)后的對應(yīng)點A2落在射線OB上,
∴A1A=A1A2,
∴∠AA2A1=∠AA1O=,
∴∠AA2A3=180°-∠AA2A1=157.5°
∵點A繞點A2順時針旋轉(zhuǎn)后的對應(yīng)點A3落在射線OB上,
∴A2A=A2A3,
∴∠AA3A2=∠AA2A1=,
∴∠AAnAn-1=,
∴∠AAnAn+1=180°-.
故答案為:157.5°,180-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,﹣1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是( )
A.a≤﹣1或a≥2B.≤a≤2
C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三角形ABC中,點D、E分別在AC、AB上,且,AE=BE,則有( )
A.△AED∽△BEDB.△AED∽△CBD
C.△AED∽△ABDD.△BAD∽△BCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為1,∠ABC=120°,E、F、P分別是AB、BC、AC上的動點,則PE+PF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AF為⊙O的直徑,點B在AF的延長線上,BE切⊙O于點E,過點A作AC⊥BE,交BE的延長線交于點C,交⊙O交于點D,連接AE,EF,FD,DE.
(1)求證:EF=ED.
(2)求證:DFAF=2AEEF.
(3)若AE=4,DE=2,求sin∠DFA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC=2,AB=AC,點D為上的動點,且cos∠ABC=.
(1)求AB的長度;
(2)在點D的運動過程中,弦AD的延長線交BC延長線于點E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由;
(3)在點D的運動過程中,過A點作AH⊥BD,求證:BH=CD+DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點O是AC邊上的一個動點,過點O作直線,設(shè)MN交的角平分線于點E,交的外角平分線于點F.
求證:;
當(dāng)點O運動到何處時,四邊形AECF是矩形?請說明理由;
在的條件下,給再添加一個條件,使四邊形AECF是正方形,那么添加的條件是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,直線MN與⊙O相切于點C,過點B作BD⊥MN于點D.
(1)求證:∠ABC=∠CBD;(2)若BC=4,CD=4,則⊙O的半徑是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為( )
A. 6π﹣B. 6π﹣9C. 12π﹣D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com