【題目】如圖,在ABCD中,點E為AB的中點,F(xiàn)為BC上任意一點,把△BEF沿直線EF翻折,點B的對應(yīng)點B′落在對角線AC上,則與∠FEB一定相等的角(不含∠FEB)有( )
A.2個
B.3個
C.4個
D.5個
【答案】C
【解析】解:由翻折的性質(zhì)可知:EB=EB',∠FEB=∠FEB';
∵E為AB的中點,
∴AE=BE=EB',
∴∠EAB=∠EBA,
∵∠BEB'=∠EAB+∠EB'A,
∴2∠FEB=2∠EAB=2∠EB'A,
∴∠FEB=∠EAB=∠EB'A,
∵AB∥CD,
∴∠BAE=∠ACD,
∴∠FEB=∠ACD,
∴與∠FEB相等的角有∠FEB',∠EAB,∠EB'A,∠ACD,
∴故選C.
【考點精析】本題主要考查了平行四邊形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(﹣2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;
(2)連接AC,AB,若點N在線段BC上運(yùn)動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求N點的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C分別在坐標(biāo)軸上,頂點B的坐標(biāo)為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.
(1)求過O,B,E三點的二次函數(shù)關(guān)系式;
(2)求直線DE的解析式和點M的坐標(biāo);
(3)若反比例函數(shù)y= (x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別是邊AB,BC的中點.若△DBE的周長是6,則△ABC的周長是( )
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2= (m為常數(shù),且m≠0)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)y1<y2<0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象如圖所示:
(1)求出該一次函數(shù)的表達(dá)式;
(2)當(dāng)x=10時,y的值是多少?
(3)當(dāng)y=12時,x的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10cm,BC=4cm,M,N兩點分別從A,B兩點以2cm/s和1cm/s的速度在矩形ABCD邊上沿逆時針方向運(yùn)動,其中有一點運(yùn)動到點D停止,當(dāng)運(yùn)動時間為秒時,△MBN為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙P與y軸相切于坐標(biāo)原點O(0,0),與x軸相交于點A(5,0),過點A的直線AB與y軸的正半軸交于點B,與⊙P交于點C.
(1)已知AC=3,求點B的坐標(biāo);
(2)若AC=a,D是OB的中點.問:點O、P、C、D四點是否在同一圓上?請說明理由.如果這四點在同一圓上,記這個圓的圓心為O1 , 函數(shù) 的圖象經(jīng)過點O1 , 求k的值(用含a的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com