【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)
【答案】解:(1)證明:連接OD,
∵BC是⊙O的切線,∴∠ABC=90°。
∵CD=CB,∴∠CBD=∠CDB。
∵OB=OD,∴∠OBD=∠ODB。
∴∠ODC=∠ABC=90°,即OD⊥CD。
∵點D在⊙O上,∴CD為⊙O的切線。
(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=。
∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,
∴。
【解析】(1)連接OD,由BC是⊙O的切線,可得∠ABC=90°,由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線。
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數,又由,即可求得答案。
科目:初中數學 來源: 題型:
【題目】列方程解應用題:第19屆亞洲運動會將于2022年9月10日至25日在杭州舉行,杭州奧體博覽城將成為杭州2022年亞運會的主場館,某工廠承包了主場館建設中某一零件的生產任務,需要在規(guī)定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規(guī)定時間內可以多生產300個零件.
(1)求原計劃每天生產的零件個數和規(guī)定的天數.
(2)為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】美麗的甬江宛如一條玉帶穿城而過,數學課外實踐活動中,小林在甬江岸邊的A, B兩點處,利用測角儀分別對西岸的一觀景亭D進行測量.如圖,測得∠DAC=45°,∠DBC=65°,若AB=114米,求觀景亭D到甬江岸邊AC的距離約為多少米?
(參考數據:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米,
(1)求圓弧所在的圓的半徑r的長;
(2)若拱頂離水面只有4米,即PE=4米時,求它的跨度A′B′.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場第一次用元購進某款機器人進行銷售,很快銷售一空,商家又用元第二次購進同款機器人,所購進數量是第一次的倍,但單價貴了元.
(1)求該商家第一次購進機器人多少個?
(2)若所有機器人都按相同的標價銷售,要求全部銷售完畢的利潤率不低于不考慮其他因素,那么每個機器人的標價至少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D,E,F分別在邊BC,AC,AB上,且BD=CE,DC=BF,連結DE,EF,DF,∠1=60°
(1)求證:△BDF≌△CED.
(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】發(fā)現任意三個連續(xù)的整數中,最大數與最小數這兩個數的平方差是4的倍數;
驗證:(1) 的結果是4的幾倍?
(2)設三個連續(xù)的整數中間的一個為n,計算最大數與最小數這兩個數的平方差,并說明它是4的倍數;
延伸:說明任意三個連續(xù)的奇數中,最大的數與最小的數這兩個數的平方差是8的倍數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com