【題目】已知等腰△OPQ的頂點P的坐標(biāo)為(43),O為坐標(biāo)原點,腰長OP5,點Q位于y軸正半軸上,則點Q的坐標(biāo)為_____

【答案】06)或(0,5

【解析】

POPQOPOQ兩種情況考慮:①當(dāng)POPQ時,過點PPMy軸于點M,由點P的坐標(biāo)可得出點M的坐標(biāo),再利用等腰三角形的性質(zhì)可求出點Q的坐標(biāo);②當(dāng)OPOQ時,利用兩點間的距離公式(勾股定理)可得出OP的長度,再利用等腰三角形的性質(zhì)可得出點Q的坐標(biāo).綜上即可得出結(jié)論.

分兩種情況考慮,如圖所示.

①當(dāng)POPQ時,過點PPMy軸于點M

∵點P的坐標(biāo)為(4,3),

∴點M的坐標(biāo)為(0,3).

又∵POPQ

OQ2OM6,

∴點Q的坐標(biāo)為(0,6);

②當(dāng)OPOQ時,∵點P的坐標(biāo)為(4,3),

OP5,

∴點Q的坐標(biāo)為(0,5),

故答案為:(0,6)或(05).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個能被13整除的自然數(shù)我們稱為十三數(shù)”,“十三數(shù)的特征是:若把這個自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個數(shù)的差是383﹣357=26,26能被13整除,因此383357十三數(shù)”.

(1)判斷3253254514是否為十三數(shù),請說明理由.

(2)若一個四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個位數(shù)字相同,則稱這個四位數(shù)為間同數(shù)”.

求證:任意一個四位間同數(shù)能被101整除.

若一個四位自然數(shù)既是十三數(shù),又是間同數(shù),求滿足條件的所有四位數(shù)的最大值與最小值之差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=﹣ (x﹣2)2﹣3,下列說法錯誤的是(
A.圖象的開口向下
B.當(dāng)x=2時,y有最大值﹣3
C.圖象的頂點坐標(biāo)為(2,﹣3)
D.圖象與y軸的交點坐標(biāo)為(0,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在桌面上,有若干個完全相同的小正方體堆成的一個幾何體,如圖所示.

1)請畫出這個幾何體的三視圖.

2)若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則三個面上是紅色的小正方體有_______.

3)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體上,要保持主視圖和左視圖不變,則最多可以添加________個小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,F(xiàn)是DC上一點,AE平分∠BAF交BC于點E,且DE⊥AF,垂足為點M,BE=3,AE=2 ,則MF的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一臺自動測溫儀記錄的圖象,它反映了我市冬季某天氣溫T隨時間t變化而變化的關(guān)系,觀察圖象得到下列信息,其中錯誤的是( )

A. 凌晨4時氣溫最低為-3℃

B. 14時氣溫最高為8℃

C. 0時至14時,氣溫隨時間增長而上升

D. 14時至24時,氣溫隨時間增長而下降

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的等邊△ABO在平面直角坐標(biāo)系的位置如圖所示,點O為坐標(biāo)原點,點Ax軸上,以點O為旋轉(zhuǎn)中心,將△ABO按逆時針方向旋轉(zhuǎn)60°,得到△OAB′,則點A′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O在直線AB上,∠AOC30°,將一直角三角板的直角邊OMOA重合,ON在∠COB內(nèi)部.現(xiàn)將三角板繞O沿順時針方向以每秒2°的速度旋轉(zhuǎn),當(dāng)ONOB重合時停止轉(zhuǎn)動.設(shè)運動時間為t(s)

(1)若直角邊ON將∠COB分成∠CON:∠BON32,求t的值;

(2)如圖2,OG為三角板MON內(nèi)部的射線,在旋轉(zhuǎn)的過程中,OG始終平分∠MOB,請問∠AOM與∠NOG是否存在一定的數(shù)量關(guān)系?若存在,求出改數(shù)量關(guān)系;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次移位.如:小宇在編號為3的頂點上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次移位,這時他到達(dá)編號為1的頂點;然后從1→2為第二次移位.若小宇從編號為4的頂點開始,第2018移位后,那么他所處的頂點的編號是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案