【題目】如圖,中,的垂直平分線,的平分線,的中位線,連,若,則_______

【答案】126°

【解析】

利用垂直平分線得到∠EBC=∠ECB=x,再利用外角與中位線性質(zhì),求出x的值,再根據(jù)∠AEC+∠CED=2x+90-x=90+x求出答案.

解: DEBC的垂直平分線

BE=CE

設(shè)∠EBC=∠ECB=x

∴∠AEC=∠EBC+∠ECB=2x

∵CE平分∠ACB

∴∠BCE=∠ACE=x

∵FG為的中位線

∴FG//AC

∴∠EFG=∠ACE=x

∵D為BC中點(diǎn),F(xiàn)為CE中點(diǎn)

∴DF//AB

∴∠EFD=∠AEF=2x

∵∠DFG=∠GFE+∠EFD=x+2x=3x

∴3x=108

∴x=36

∴∠AED=∠AEC+∠CED=2x+90-x=90+x=90+36=126.

故答案為:126度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,,,…,n為正整數(shù)),點(diǎn)A(0,1).

1)如圖1,過點(diǎn)Ay軸垂線,分別交拋物線,,…,于點(diǎn),,…,和點(diǎn)A不重合).

①求的長.

②求的長.

2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿y軸向上運(yùn)動(dòng),過點(diǎn)Py軸的垂線,交拋物線于點(diǎn),,交拋物線于點(diǎn),,交拋物線于點(diǎn),,……,交拋物線于點(diǎn),在第二象限).

①求的值.

②求的值.

3)過x軸上的點(diǎn)Q(原點(diǎn)除外),作x軸的垂線分別交拋物線,,…,于點(diǎn),,,…,,是否存在線段i,j為正整數(shù)),使,若存在,求出ij的最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果將ABCDEF各分割成兩個(gè)三角形,且ABC所分的兩個(gè)三角形與DEF所分的兩個(gè)三角形分別對(duì)應(yīng)相似,那么稱ABCDEF互為“近似三角形”,將每條分割線稱為“近似分割線”.

1)如圖1,在RtABCRtDEF中,∠C=∠F90°,∠A30°,∠D40°,請(qǐng)判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)直接在圖1中畫出一組分割線,并注明分割后所得兩個(gè)小三角形銳角的度數(shù);若不是,請(qǐng)說明理由.

2)判斷下列命題是真命題還是假命題,若是真命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“√”;若是假命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“×”.

①任意兩個(gè)直角三角形都是互為“近似三角形”   ;

②兩個(gè)“近似三角形”只有唯一的“近似分割線”   

③如果兩個(gè)三角形中有一個(gè)角相等,那么這兩個(gè)三角形一定是互為“近似三角形”   

3)如圖2,已知ABCDEF中,AD15°,B45°,E60°,且BCEF,判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)?jiān)趫D2中畫出不同位置的“近似分割線”,并直接分別寫出“近似分割線”的和;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)研究性學(xué)習(xí)中,小兵將兩個(gè)全等的直角三角形紙片ABCDEF拼在一起,使點(diǎn)A與點(diǎn)F重合,點(diǎn)C與點(diǎn)D重合(如圖1),其中∠ACB=∠DFE90°,BCEF3cm,ACDF4cm,并進(jìn)行如下研究活動(dòng).

活動(dòng)一:將圖1中的紙片DEF沿AC方向平移,連結(jié)AE,BD(如圖2),當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)停止平移.

(思考)圖2中的四邊形ABDE是平行四邊形嗎?請(qǐng)說明理由.

(發(fā)現(xiàn))當(dāng)紙片DEF平移到某一位置時(shí),小兵發(fā)現(xiàn)四邊形ABDE為矩形(如圖3).求AF的長.

活動(dòng)二:在圖3中,取AD的中點(diǎn)O,再將紙片DEF繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)α度(0≤α≤90),連結(jié)OBOE(如圖4).

(探究)當(dāng)EF平分∠AEO時(shí),探究OFBD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的315日是國際消費(fèi)者權(quán)益日,許多家居商城都會(huì)利用這個(gè)契機(jī)進(jìn)行打折促銷活動(dòng).甲賣家的某款沙發(fā)每套成本為5000元,在標(biāo)價(jià)8000元的基礎(chǔ)上打9折銷售.

1)現(xiàn)在甲賣家欲繼續(xù)降價(jià)吸引買主,問最多降價(jià)多少元,才能使利潤率不低于20%?

2)據(jù)媒體爆料,有一些賣家先提高商品價(jià)格后再降價(jià)促銷,存在欺詐行為.乙賣家也銷售相同的沙發(fā),其成本、標(biāo)價(jià)與甲賣家一致,以前每周可售出8套,現(xiàn)乙賣家先將標(biāo)價(jià)提高,再大幅降價(jià)元,使得這款沙發(fā)在315日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了,這樣一天的利潤達(dá)到了50000元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生利用40天社會(huì)實(shí)踐參與了某加盟店經(jīng)營,他銷售了一種成本為20/件的商品,細(xì)心的他發(fā)現(xiàn)在第天銷售的相關(guān)數(shù)據(jù)可近似地用如下表中的函數(shù)表示:

銷售量

銷售單價(jià)

當(dāng)時(shí),單價(jià)為

當(dāng)時(shí),單價(jià)為40

1)求前20天第幾天獲得的利潤最大?最大利潤是多少?

2)求后20天第幾天獲得的利潤最大?最大利潤是多少?

3)在后20天中,他決定每銷售一件商品給山區(qū)孩子捐款元(為整數(shù)),此時(shí)若還要求每一天的利潤都不低于160元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線BD上.

1)求證:BG=DE

2)若EAD中點(diǎn),FH=2,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】珠海市有AB,C,D,E五個(gè)景區(qū)很受游客喜愛.對(duì)某小區(qū)居民在暑假期間去以上五個(gè)景區(qū)旅游(只選一個(gè)景區(qū))的意向做了一次隨機(jī)調(diào)查統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了如下兩幅不完整的統(tǒng)計(jì)圖.

1)該小區(qū)居民在這次隨機(jī)調(diào)查中被調(diào)查到的人數(shù)是   人,m   ;

2)若該小區(qū)有居民1500人,試估計(jì)去C景區(qū)旅游的居民約有多少人?

3)甲、乙兩人暑假打算游玩,甲從B、C兩個(gè)景點(diǎn)中任意選擇一個(gè)游玩,乙從B、C 、E三個(gè)景點(diǎn)中任意選擇一個(gè)游玩.求甲、乙恰好游玩同一景點(diǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開學(xué),利用網(wǎng)上平臺(tái),停課不停學(xué),某校對(duì)初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測試成績,按由高到低分為A,BC,D四個(gè)等級(jí),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:

(1)該校共抽查了   名同學(xué)的數(shù)學(xué)測試成績,扇形統(tǒng)計(jì)圖中A等級(jí)所占的百分比a   

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校初三共有1180名同學(xué),請(qǐng)估計(jì)該校初三學(xué)生數(shù)學(xué)測試成績優(yōu)秀(測試成績B級(jí)以上為優(yōu)秀,含B級(jí))約有   名;

(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時(shí)線上學(xué)習(xí)情況,請(qǐng)用列表或畫樹形圖的方法求出恰好選中一男一女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案