【題目】如圖,一艘輪船位于燈塔B的正西方向A處,且A處與燈塔B相距60海里,輪船沿東北方向勻速航行,到達位于燈塔B的北偏東l5°方向上的C處.
(1)求∠ACB的度數(shù);
(2)求燈塔B到C處的距離.(結(jié)果保留根號)
【答案】(1)30°;(2)60海里.
【解析】
(1)利用三角形內(nèi)角和定理進行計算;
(2)過點B作AC的垂線,垂足為D.在△BDC中利用三角函數(shù)即可求解.
(1)在△ABC中,∠CAB=45°,∠CBA=90°+15°=105°.則∠ACB=180°-45°-105°=30°,即∠ACB=30°;
(2)過點B作AC的垂線,垂足為D,依題意可得∠DAB=45°,∠DBA=45°,AB=60海里.
AD=BD=ABsin45=60×.
在△BDC中,∠DBC=45°+15°=60°,∠BDC=90°,cos∠DBC==cos60°=.
∴BC=60(海里).
答:燈塔B到C處的距離是60海里.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點P從點A出發(fā),以每秒2cm的速度沿折線A-C-B-A運動,設(shè)運動時間為t秒(t>0).
(1)若點P在AC上,且滿足PA=PB時,求出此時t的值;
(2)若點P恰好在∠BAC的角平分線上,求t的值;
(3)在運動過程中,直接寫出當(dāng)t為何值時,△BCP為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認為正確的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過對角線BD上一點P作EF∥AB,GH∥AD,與各邊交點分別為E. F. G、H,則圖中面積相等的平行四邊形的對數(shù)有______對;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形紙片,對折矩形紙片ABCD,使AD與BC重合折痕為EF;展平后再過點B折疊矩形紙片,使點A落在EF上的點N,折痕BM與EF相交于點Q;再次展平,連接BN,MN,延長MN交BC于點有如下結(jié)論:;是等邊三角形;;為線段BM上一動點,H是BN的中點,則的最小值是其中正確結(jié)論的個數(shù)是
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在△ABC中,AB,BC,AC三邊的長分別為,,,求此三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上:________.
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別為a,a,a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.
探索創(chuàng)新:
(3)若△ABC三邊的長分別為,,(m>0,n>0,且m≠n),試運用構(gòu)圖法畫出示意圖并求出這三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點E,點F在AC上,BD=DF.
(1)求證:CF=EB.
(2)若AB=12,AF=8,求CF的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com