【題目】如圖1,觀察數(shù)表,如何計(jì)算數(shù)表中所有數(shù)的和?

方法1:如圖1,先求每行數(shù)的和:

第1行

第2行

第n行

故表中所有數(shù)的和:

;

方法2:如圖2.依次以第1行每個(gè)數(shù)為起點(diǎn),按順時(shí)針?lè)较蛴?jì)算各數(shù)的和:

第1組

第2組

第3組

用這組數(shù)計(jì)算的結(jié)果,表示數(shù)表中所有數(shù)的和為: ,

綜合上面兩種方法所得的結(jié)果可得等式:

利用上面得到的規(guī)律計(jì)算:

【答案】方法1:;方法2:;; .

【解析】

方法1:先提取公因式,然后利用計(jì)算公式,即可求解.

方法2:根據(jù)規(guī)律第1,第2,第3可找到規(guī)律,

根據(jù)表中所有數(shù)的和相等,將方法1和方法2綜合即可得等式.

結(jié)合上一問(wèn)所得等式即可求出解.

方法1:

=

=

=

=

方法2

=

用這組數(shù)計(jì)算的結(jié)果,表示數(shù)表中所有數(shù)的和為:

;

綜合上面兩種方法所得的結(jié)果可得等式:

計(jì)算

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊矩形紙片ABCD,AB=8,AD=6.將紙片折疊,使得AD邊落在AB邊上,折痕為AE,再將△AED沿DE向右翻折,AEBC的交點(diǎn)為F,則△CEF的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.

(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

(3)如圖3,延長(zhǎng)BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.

①求∠CAM的度數(shù);

②當(dāng)FH=,DM=4時(shí),求DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,弦AB垂直平分半徑OC,垂足為D.若點(diǎn)P是⊙O上異于點(diǎn)AB的任意一點(diǎn),則∠APB=

A.30°60°B.60°150°C.30°150°D.60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O的半徑為5,ABC是⊙O的內(nèi)接三角形,AB8,.過(guò)點(diǎn)B作⊙O的切線BD,過(guò)點(diǎn)AADBD,垂足為D

1)求證:∠BAD+C90°

2)求線段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB90°,ACBC2,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角線坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸正半軸上的A′處,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解初三年級(jí)600名學(xué)生的身體健康情況,從該年級(jí)隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:)分成五組(;;;),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.

解答下列問(wèn)題:

1)這次抽樣調(diào)查的樣本容量是________,并補(bǔ)全頻數(shù)分布直方圖;

2組學(xué)生的頻率為_________,在扇形統(tǒng)計(jì)圖中組的圓心角是__________度;

3)請(qǐng)你估計(jì)該校初三年級(jí)體重超過(guò)的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點(diǎn)EBC的延長(zhǎng)線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時(shí),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明在家鄉(xiāng)的樓頂上處測(cè)得池塘的一端處的俯角為,測(cè)得池塘處的俯角、、三點(diǎn)在同一水平直線上.已知樓高米,求池塘寬為多少米?(參考數(shù)據(jù):, , ,.結(jié)果保留一位小數(shù).)

查看答案和解析>>

同步練習(xí)冊(cè)答案