如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c與y軸交于點C,與x軸交于A,B兩點,點B的坐標(biāo)為(3,0),直線y=-x+3恰好經(jīng)過B,C兩點.
(1)寫出點C的坐標(biāo);
(2)求出拋物線y=x2+bx+c的解析式,并寫出拋物線的對稱軸和點A的坐標(biāo).

【答案】分析:(1)由點C在y軸上且在直線y=-x+3上,可知點C的縱坐標(biāo)為0,代入直線解析式即可求得點C的橫坐標(biāo),則可得點C的坐標(biāo);
(2)利用待定系數(shù)法即可求得拋物線的解析式,由對稱軸為x=-即可求得其對稱軸,根據(jù)對稱性即可求得點A的坐標(biāo).
解答:解:(1)∵點C在y軸上,
∴當(dāng)y=0時,-x+3=0,
解得:x=3,
∴點C的坐標(biāo)為:(0,3);

(2)∵拋物線y=x2+bx+c過點B,C,
,
解得,
∴拋物線的解析式為y=x2-4x+3.
∴對稱軸為x=2,
點A(1,0).
點評:此題考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)與點的關(guān)系,以及二次函數(shù)的對稱軸交點坐標(biāo)的求法等知識.此題難度適中,解題時注意仔細(xì)分析題意,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案