(2013•貴港)如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱(chēng)軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD.
(1)求該拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)在(2)的條件下,若經(jīng)過(guò)點(diǎn)P的直線(xiàn)PE與y軸交于點(diǎn)E,是否存在以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等?若存在,請(qǐng)求出直線(xiàn)PE的解析式;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)首先求出點(diǎn)M的坐標(biāo),然后利用頂點(diǎn)式和待定系數(shù)法求出拋物線(xiàn)的解析式;
(2)如答圖1所示,作輔助線(xiàn)構(gòu)造梯形,利用S=S梯形PEOC-S△COD-S△PDE求出S關(guān)于x的表達(dá)式;求出拋物線(xiàn)與x軸正半軸的交點(diǎn)坐標(biāo),得到自變量的取值范圍;
(3)由于三角形的各邊,只有OD=2是確定長(zhǎng)度的,因此可以以O(shè)D為基準(zhǔn)進(jìn)行分類(lèi)討論:
①OD=OP.因?yàn)榈谝幌笙迌?nèi)點(diǎn)P到原點(diǎn)的距離均大于4,因此OP≠OD,此種情形排除;
②OD=OE.分析可知,只有如答圖2所示的情形成立;
③OD=PE.分析可知,只有如答圖3所示的情形成立.
解答:解:(1)由題意得:OC=4,OD=2,∴DM=OC+OD=6,∴頂點(diǎn)M坐標(biāo)為(2,6).
設(shè)拋物線(xiàn)解析式為:y=a(x-2)2+6,
∵點(diǎn)C(0,4)在拋物線(xiàn)上,
∴4=4a+6,
解得a=-
1
2

∴拋物線(xiàn)的解析式為:y=-
1
2
(x-2)2+6=-
1
2
x2+2x+4.

(2)如答圖1,過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E.

∵P(x,y),且點(diǎn)P在第一象限,
∴PE=y,OE=x,
∴DE=OE-OD=x-2.
S=S梯形PEOC-S△COD-S△PDE
=
1
2
(4+y)•x-
1
2
×2×4-
1
2
(x-2)•y
=y+2x-4.
將y=-
1
2
x2+2x+4代入上式得:S=-
1
2
x2+2x+4+2x-4=-
1
2
x2+4x.
在拋物線(xiàn)解析式y(tǒng)=-
1
2
x2+2x+4中,令y=0,即-
1
2
x2+2x+4=0,解得x=2±2
3

設(shè)拋物線(xiàn)與x軸交于點(diǎn)A、B,則B(2+2
3
,0),
∴0<x<2+2
3

∴S關(guān)于x的函數(shù)關(guān)系式為:S=-
1
2
x2+4x(0<x<2+2
3
).

(3)存在.
若以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等,可能有以下情形:
(I)OD=OP.
由圖象可知,OP最小值為4,即OP≠OD,故此種情形不存在.
(II)OD=OE.
若點(diǎn)E在y軸正半軸上,如答圖2所示:

此時(shí)△OPD≌△OPE,
∴∠OPD=∠OPE,即點(diǎn)P在第一象限的角平分線(xiàn)上,
∴直線(xiàn)PO的解析式為:y=x;
若點(diǎn)E在y軸負(fù)半軸上,易知此種情形下,兩個(gè)三角形不可能全等,故不存在.
(III)OD=PE.
∵OD=2,
∴第一象限內(nèi)對(duì)稱(chēng)軸右側(cè)的點(diǎn)到y(tǒng)軸的距離均大于2,
則點(diǎn)P只能位于對(duì)稱(chēng)軸左側(cè)或與頂點(diǎn)M重合.
若點(diǎn)P位于第一象限內(nèi)拋物線(xiàn)對(duì)稱(chēng)軸的左側(cè),易知△OPE為鈍角三角形,而△OPD為銳角三角形,則不可能全等;
若點(diǎn)P與點(diǎn)M重合,如答圖3所示,此時(shí)△OPD≌OPE,四邊形PDOE為矩形,

∴直線(xiàn)PE的解析式為:y=6.
綜上所述,存在以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等,直線(xiàn)PE的解析式為y=6.
點(diǎn)評(píng):本題是二次函數(shù)壓軸題,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、一次函數(shù)、全等三角形、圖形面積計(jì)算等知識(shí)點(diǎn).難點(diǎn)在于第(3)問(wèn),兩個(gè)三角形中只有一邊為定長(zhǎng),因此分類(lèi)討論稍顯復(fù)雜,需要仔細(xì)分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴港)如圖,直線(xiàn)a∥b,直線(xiàn)c與a、b都相交,從所標(biāo)識(shí)的∠1、∠2、∠3、∠4、∠5這五個(gè)角中任意選取兩個(gè)角,則所選取的兩個(gè)角互為補(bǔ)角的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴港)如圖,已知圓錐的母線(xiàn)長(zhǎng)為6,圓錐的高與母線(xiàn)所夾的角為θ,且sinθ=
1
3
,則該圓錐的側(cè)面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴港)如圖,點(diǎn)A(a,1)、B(-1,b)都在雙曲線(xiàn)y=-
3
x
(x<0)
上,點(diǎn)P、Q分別是x軸、y軸上的動(dòng)點(diǎn),當(dāng)四邊形PABQ的周長(zhǎng)取最小值時(shí),PQ所在直線(xiàn)的解析式是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴港)如圖,在矩形ABCD中,點(diǎn)E是AD的中點(diǎn),∠EBC的平分線(xiàn)交CD于點(diǎn)F,將△DEF沿EF折疊,點(diǎn)D恰好落在BE上M點(diǎn)處,延長(zhǎng)BC、EF交于點(diǎn)N.有下列四個(gè)結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④S△BEF=3S△DEF.其中,將正確結(jié)論的序號(hào)全部選對(duì)的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴港)如圖,AB是⊙O的弦,OH⊥AB于點(diǎn)H,點(diǎn)P是優(yōu)弧上一點(diǎn),若AB=2
3
,OH=1,則∠APB的度數(shù)是
60°
60°

查看答案和解析>>

同步練習(xí)冊(cè)答案