【題目】如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y= x刻畫.

(1)請用配方法求二次函數(shù)圖象的最高點P的坐標(biāo);
(2)小球的落點是A,求點A的坐標(biāo);
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標(biāo).

【答案】
(1)解:由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,

故二次函數(shù)圖象的最高點P的坐標(biāo)為(2,4)


(2)解:聯(lián)立兩解析式可得: ,

解得: ,或

故可得點A的坐標(biāo)為( ,


(3)解:如圖,作PQ⊥x軸于點Q,AB⊥x軸于點B.

SPOA=SPOQ+S梯形PQBA﹣SBOA

= ×2×4+ ×( +4)×( ﹣2)﹣ × ×

=4+

=


(4)解:過P作OA的平行線,交拋物線于點M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.

設(shè)直線PM的解析式為y= x+b,

∵P的坐標(biāo)為(2,4),

∴4= ×2+b,解得b=3,

∴直線PM的解析式為y= x+3.

,解得 ,

∴點M的坐標(biāo)為( , ).


【解析】(1)利用配方法可配成頂點式;(2)A點的坐標(biāo)可通過求拋物線與直線解析式聯(lián)立的方程組的解即可;(3)“斜三角形”面積可通過作垂線轉(zhuǎn)化為“豎直三角形”的面積和;(4)底邊公用的三角形面積相等可逆向思維,可由“平行線所夾的底邊共用三角形面積相等”得到直線PMOA,求出PM解析式與拋物線的交點,即可求出M坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地勻速駛向B地,甲車比乙車早出發(fā)2小時,并且甲車圖中休息了0.5小時后仍以原速度駛向B地,如圖是甲、乙兩車行駛的路程y(千米)與行駛的時間x(小時)之間的函數(shù)圖象.下列說法:

m1,a40;

②甲車的速度是40千米/小時,乙車的速度是80千米/小時;

③當(dāng)甲車距離A260千米時,甲車所用的時間為7小時;

④當(dāng)兩車相距20千米時,則乙車行駛了34小時,

其中正確的個數(shù)是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,若按圖中規(guī)律繼續(xù)下去,則∠1+2+n等于(  )

A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結(jié)論:
①E為AB的中點;
②FC=4DF;
③SECF=
④當(dāng)CE⊥BD時,△DFN是等腰三角形.
其中一定正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在《幾何原本》中記載著這樣的題目:如果同一條線段被兩個分點先后分成相等和不相等的線段,以得到的各線段為邊作正方形,那么不相等的兩個正方形的面積之和等于原線段一半上的正方形與兩個分點之間一段上正方形的面積之和的兩倍.王老師帶領(lǐng)學(xué)生在閱讀的基礎(chǔ)上畫出的部分圖形如圖,已知線段,點為線段的中點,點為線段上任意一點(不與重合),分別以為邊在的下方作正方形和正方形,以為邊在線段下方作正方形和正方形,則正方形與正方形的面積之和等于正方形和正方形面積之和的兩倍.

1)請你畫出正方形和正方形(不必尺規(guī)作圖);

2)設(shè),,根據(jù)題意寫出關(guān)于的等式并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,同底數(shù)冪的乘法法則為:am·anamn(其中a≠0,mn為正整數(shù)),類似地我們規(guī)定關(guān)于任意正整數(shù)m,n的一種新運算:h(mn)h(m)·h(n),請根據(jù)這種新運算填空:

(1)h(1),則h(2)________;

(2)h(1)k(k≠0),則h(n)·h(2017)________(用含nk的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊。

1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱;

2)如圖,將繞頂點B順時針方向旋轉(zhuǎn),得到,連接AD、DC,,求證:,即四邊形ABCD是勾股四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△A1B1C1是由△ABC經(jīng)過平移得到的,其中,A、B、C三點的對應(yīng)點分別是A1、B1、C1,它們在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:

ABC

Aa,0)

B(3,0)

C(5,5)

A1B1C1

A1(﹣3,2)

B1(﹣1,b

C1c,7)

(1)觀察表中各對應(yīng)點坐標(biāo)的變化,并填空:a=   ,b=   c=   ;

(2)在如圖的平面直角坐標(biāo)系中畫出△ABC及△A1B1C1;

(3)△A1B1C1的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前夕,某淘寶店主從廠家購進(jìn)A、B兩種禮盒,已知A、B兩種禮盒的單價比為2:3,單價和為200元.

(1)求A、B兩種禮盒的單價分別是多少元?

(2)該店主購進(jìn)這兩種禮盒恰好用去9600元,且購進(jìn)A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?

(3)根據(jù)市場行情,銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元.為奉獻(xiàn)愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?

查看答案和解析>>

同步練習(xí)冊答案