【題目】如圖,四邊形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中點,AE與BD相交于點F,連接DE.
(1)求證:△ABE≌△BCD;
(2)判斷線段AE與BD的數(shù)量關(guān)系及位置關(guān)系,并說明理由;
(3)若CD=1,試求△AED的面積.
【答案】(1)見解析;(2)AE=BD,AE⊥BD,理由見解析;(3)△AED的面積為.
【解析】
(1)由已知條件可推導得到,由SAS即可證明△ABE≌△BCD;
(2)由(1)可得△ABE≌△BCD 可得AE=BD,再由角的轉(zhuǎn)化可得∠AFB=90°,即可證明AE⊥BD;
(3)因為 △AED的面積=梯形ABCD的面積﹣△ABE的面積﹣△CDE的面積,即可求解△AED的面積.
(1)證明:∵AB∥CD,
∴∠ABE+∠C=180°,
∵∠C=90°,
∴∠ABE=90°=∠C,
∵E是BC的中點,
∴BC=2BE,
∵BC=2CD,
∴BE=CD,
在△ABE和△BCD中,,
∴△ABE≌△BCD(SAS);
(2)解:AE=BD,AE⊥BD,理由如下:
由(1)得:△ABE≌△BCD,
∴AE=BD,
∵∠BAE=∠CBD,∠ABF+∠CBD=90°,
∴∠ABF+∠BAE=90°,
∴∠AFB=90°,
∴AE⊥BD;
(3)解:∵△ABE≌△BCD,
∴BE=CD=1,
∵AB=BC=2CD=2,
∴CE=BC﹣BE=1,
∴CE=CD,
∴△AED的面積=梯形ABCD的面積﹣△ABE的面積﹣△CDE的面積=(1+2)×2﹣×2×1﹣×1×1=
科目:初中數(shù)學 來源: 題型:
【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時不能擋光. 如圖,某舊樓的一樓窗臺高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時陽光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請問新建樓房最高_____________米. (結(jié)果精確到1米.,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在班上組織的“元旦迎新晚會”中,小麗和小芳都想當節(jié)目主持人,但現(xiàn)在只有一個名額.小芳想出了一個用游戲來選人的辦法,她將一個轉(zhuǎn)盤平均分成份,如圖所示.游戲規(guī)定:隨意轉(zhuǎn)動轉(zhuǎn)盤,若指針指到偶數(shù),則小麗去;若指針指到奇數(shù),則小芳去.
指針指到偶數(shù)的概率是多少?指針指到奇數(shù)的概率是多少?
這個游戲?qū)﹄p方公平嗎?為什么?
若游戲不公平,請你修改轉(zhuǎn)盤中的數(shù)字,使得游戲?qū)﹄p方公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角中,,,AD,CE分別是和的平分線,AD,CE相交于點F.
求的度數(shù);
判斷FE與FD之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,中,,、∠C的平分線交于點,過點作交、于、.試回答:
(1)圖中等腰三角形有________個.猜想:與、之間的關(guān)系是________.說明理由;
(2)如圖②,若,圖中等腰三角形有________個,在第(1)問中與、間的關(guān)系還存在嗎?
(3)如圖③,若中的平分線與三角形外角平分線交于,過點作交于,交于,這時圖中還有等腰三角形嗎?與、關(guān)系又如何?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去興化李中水上森林游玩.
(1)小明和小剛都在本周日上午去游玩的概率為 ;
(2)求他們?nèi)嗽谕粋半天去游玩的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把張形狀、大小相同但畫面不同的風景圖片全部從中間剪斷,然后將四張形狀相同的小圖片混合在一起.現(xiàn)從這四張圖片中隨機的一次抽出張.
請用列表或畫樹狀圖的方法表示出上述實驗所有可能結(jié)果.
求這張圖片恰好組成一張完整風景圖概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)某賓館準備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.
(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;
(2)若該賓館準備同時購進這兩種型號的換氣扇共40臺并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com