【題目】如圖,點O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖(1),若∠AOC=,求∠DOE的度數;
(2)如圖(2),將∠COD繞頂點O旋轉,且保持射線OC在直線AB上方,在整個旋轉過程中,當∠AOC的度數是多少時,∠COE=2∠DOB.
【答案】(1)20°;(2)綜上所述,當∠AOC的度數是60°或108°時,∠COE=2∠DOB
【解析】
(1)依據鄰補角的定義以及角平分線的定義,即可得到∠COE的度數,進而得出∠DOE的度數;
(2)設∠AOC=α,則∠BOC=180°-α,依據OE平分∠BOC,可得∠COE=×(180°-α)=90°-α,再分兩種情況,依據∠COE=2∠DOB,即可得到∠AOC的度數.
(1)∵∠AOC=40°,
∴∠BOC=140°,
又∵OE平分∠BOC,
∴∠COE=×140°=70°,
∵∠COD=90°,
∴∠DOE=90°-70°=20°;
(2)設∠AOC=α,則∠BOC=180°-α,
∵OE平分∠BOC,
∴∠COE=×(180°-α)=90°-α,
分兩種情況:
當OD在直線AB上方時,∠BOD=90°-α,
∵∠COE=2∠DOB,
∴90°-α=2(90°-α),
解得α=60°.
當OD在直線AB下方時,∠BOD=90°-(180°-α)=α-90°,
∵∠COE=2∠DOB,
∴90°-α=2(α-90°),
解得α=108°.
綜上所述,當∠AOC的度數是60°或108°時,∠COE=2∠DOB.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+ x+c(a≠0)與x軸交于A、B兩點(點A在點B的右側),與y軸交于點C,點A的坐標為(4,0),拋物線的對稱軸是直線x= .
(1)求拋物線的解析式;
(2)M為第一象限內的拋物線上的一個點,過點M作MG⊥x軸于點G,交AC于點H,當線段CM=CH時,求點M的坐標;
(3)在(2)的條件下,將線段MG繞點G順時針旋轉一個角α(0°<α<90°),在旋轉過程中,設線段MG與拋物線交于點N,在線段GA上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一件工程甲獨做50天可完,乙獨做75天可完,現在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤
A. 10 B. 20 C. 30 D. 25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數軸上,A、B兩點表示的數a,b滿足|a﹣6|+(b+12)2=0
(1)a= ,b= ;
(2)若小球M從A點向負半軸運動、小球N從B點向正半軸運動,兩球同時出發(fā),小球M運動的速度為每秒2個單位,當M運動到OB的中點時,N點也同時運動到OA的中點,則小球N的速度是每秒 個單位;
(3)若小球M、N保持(2)中的速度,分別從A、B兩點同時出發(fā),經過 秒后兩個小球相距兩個單位長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】骰子是一種特別的數字立方體(見下圖),它符合規(guī)則:相對兩面的點數之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知數軸上點A表示的為8,B是數軸上一點,且AB=14,動點P從點A出發(fā),以每秒5個單位長度的速度沿數軸向左勻速運動,設運動時間為t(t>0)秒.
(1)寫出數軸上點B表示的數 ,點P表示的數 (用含t的代數式表示);
(2)動點H從點B出發(fā),以每秒3個單位長度的速度沿數軸向左勻速運動,若點P、H同時出發(fā),問點P運動多少秒時追上點H?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索與發(fā)現
(1)正方形ABCD中有菱形PEFG,當它們的對角線重合,且點P與點B重合時(如圖1),通過觀察或測量,猜想線段AE與CG的數量關系,并證明你的猜想;
(2)當(1)中的菱形PEFG沿著正方形ABCD的對角線平移到如圖2的位置時,猜想線段AE與CG的數量關系,只寫出猜想不需證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com