精英家教網(wǎng)如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方位角為北偏東80°,測得C處的方位角為南偏東25°.航行1h后到達(dá)C處,在C處測得燈塔A的方位角為北偏東20°,則C到A的距離是
 
km.
分析:過點B作BD⊥AC于點D,先解Rt△BCD,求出BD=CD=15
2
,再解Rt△ABD,求出AD=5
6
,則CA=CD+AD.
解答:精英家教網(wǎng)解:過點B作BD⊥AC于點D.
在Rt△BCD中,∵∠BDC=90°,∠C=25°+20°=45°,BC=30×1=30,
∴BD=CD=
2
2
BC=15
2
,
在Rt△ABD中,∵∠BDA=90°,∠ABD=30°,
∴AD=BD•tan30°=5
6

∴CA=CD+AD=15
2
+5
6

即C到A的距離為(15
2
+5
6
)km.
故答案為(15
2
+5
6
).
點評:本題考查了解直角三角形的應(yīng)用-方向角問題.解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方位角為北偏東80°,測得C處的方位角為南偏東25°,航行1小時后到達(dá)C處,在C處測得A的方位角為北偏東20°,則C到A的距離是(  )
A、15
6
km
B、15
2
km
C、15(
6
+
2
)km
D、5(
6
+3
2
)km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方位角為北偏東80°,測得C處的方位角為南偏東25°,航行1小時后到達(dá)C處,在C處測得A的方位角為北偏東20°,求C到A的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方位角為北偏東80°,測得C處的方位角為南偏東25°,航行1小時后到達(dá)C處,在C處測得A的方位角為北偏東20°,求C到A的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第7章《銳角三角函數(shù)》好題集(16):7.6 銳角三角函數(shù)的簡單應(yīng)用(解析版) 題型:選擇題

如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方位角為北偏東80°,測得C處的方位角為南偏東25°,航行1小時后到達(dá)C處,在C處測得A的方位角為北偏東20°,則C到A的距離是( )

A.15km
B.15km
C.15(+)km
D.5(+3)km

查看答案和解析>>

同步練習(xí)冊答案