【題目】如圖,長(zhǎng)方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進(jìn)行裁剪和拼圖:
第一步:如圖①,在線段AD上任意取一點(diǎn)E,沿EB,EC剪下一個(gè)三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點(diǎn)M,線段BC上任意取一點(diǎn)N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側(cè)紙片繞G點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)180°,使線段GB與GE重合,將MN右側(cè)紙片繞H點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)180°,使線段HC與HE重合,拼成一個(gè)與三角形紙片EBC面積相等的四邊形紙片.
(注:裁剪和拼圖過(guò)程均無(wú)縫且不重疊)
則拼成的這個(gè)四邊形紙片的周長(zhǎng)的最小值為cm,最大值為cm.
【答案】20;12+
【解析】解:畫出第三步剪拼之后的四邊形M1N1N2M2的示意圖,如答圖1所示.
圖中,N1N2=EN1+EN2=NB+NC=BC,
M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位線定理),
又∵M(jìn)1M2∥N1N2 , ∴四邊形M1N1N2M2是一個(gè)平行四邊形,
其周長(zhǎng)為2N1N2+2M1N1=2BC+2MN.
∵BC=6為定值,∴四邊形的周長(zhǎng)取決于MN的大小.
如答圖2所示,是剪拼之前的完整示意圖.
過(guò)G、H點(diǎn)作BC邊的平行線,分別交AB、CD于P點(diǎn)、Q點(diǎn),則四邊形PBCQ是一個(gè)矩形,這個(gè)矩形是矩形ABCD的一半.
∵M(jìn)是線段GH上的任意一點(diǎn),N是線段BC上的任意一點(diǎn),
根據(jù)垂線段最短,得到MN的最小值為PQ與BC平行線之間的距離,即MN最小值為4;
而MN的最大值等于矩形對(duì)角線的長(zhǎng)度,即 = =
∵四邊形M1N1N2M2的周長(zhǎng)=2BC+2MN=12+2MN,
∴四邊形M1N1N2M2周長(zhǎng)的最小值為12+2×4=20,
最大值為12+2× =12+ .
所以答案是:20,12+ .
【考點(diǎn)精析】掌握三角形中位線定理和矩形的性質(zhì)是解答本題的根本,需要知道連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù) 的圖象,當(dāng)x取1,2,3,…,n時(shí),對(duì)應(yīng)在反比例圖象上的點(diǎn)分別為M1 , M2 , M3…,Mn , 則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠用如圖甲所示的長(zhǎng)方形和正方形紙板,做成如圖乙所示的豎式與橫式兩種長(zhǎng)方體形狀的無(wú)蓋紙盒.
(1)現(xiàn)有正方形紙板162張,長(zhǎng)方形紙板340張.若要做兩種紙盒共100個(gè),設(shè)做豎式紙盒x個(gè).
①根據(jù)題意,完成以下表格:
紙盒 紙板 | 豎式紙盒(個(gè)) | 橫式紙盒(個(gè)) |
x | 100﹣x | |
正方形紙板(張) | 2(100﹣x) | |
長(zhǎng)方形紙板(張) | 4x |
②按兩種紙盒的生產(chǎn)個(gè)數(shù)來(lái)分,有哪幾種生產(chǎn)方案?
(2)若有正方形紙162張,長(zhǎng)方形紙板a張,做成上述兩種紙盒,紙板恰好用完.已知290<a<306.求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD中,G是CD上一點(diǎn),延長(zhǎng)BC到E,使CE=CG,連接BG并延長(zhǎng)交DE于F.
(1)求證:△BCG≌△DCE;
(2)將△DCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F.切點(diǎn)為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說(shuō)明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若正方形EFGH由正方形ABCD繞某點(diǎn)旋轉(zhuǎn)得到,則可以作為旋轉(zhuǎn)中心的是( )
A.M或O或N
B.E或O或C
C.E或O或N
D.M或O或C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y= (x>0)的圖象與一次函 數(shù)y=﹣x+b的圖象分別交于A(1,3)、B兩點(diǎn).
(1)求m、b的值;
(2)若點(diǎn)M是反比例函數(shù)圖象上的一動(dòng)點(diǎn),直線MC⊥x軸于C,交直線AB于點(diǎn)N,MD⊥y軸于D,NE⊥y軸于E,設(shè)四邊形MDOC、NEOC的面積分別為S1、S2 , S=S2﹣S1 , 求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳。經(jīng)過(guò)測(cè)試:同時(shí)開放1個(gè)大餐廳和2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供2280名學(xué)生就餐。
(1)1個(gè)大餐廳和1個(gè)小餐廳分別可供多少名學(xué)生就餐?
(2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com