【題目】如圖,點D在⊙O的直徑AB的延長線上,CD切⊙O于點C,AE⊥CD于點E
(1)求證:AC平分∠DAE;
(2)若AB=6,BD=2,求CE的長.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,D為AC中點,P為AB上的動點,將P繞點D逆時針旋轉90°得到P′,連CP′的最小值為( 。
A.1.6B.2.4C.2D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“三等分角”是數學史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數學家帕普斯借助函數給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設P(,)、R(,),求直線OM對應的函數表達式(用含,的代數式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=∠AOB;
(3)應用上述方法得到的結論,你如何三等分一個鈍角(用文字簡要說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線M:y=ax2+bx+c(a≠0)經過A(﹣1,0),且頂點坐標為B(0,1).
(1)求拋物線M的函數表達式;
(2)設F(t,0)為x軸正半軸上一點,將拋物線M繞點F旋轉180°得到拋物線M1.
①拋物線M1的頂點B1的坐標為 ;
②當拋物線M1與線段AB有公共點時,結合函數的圖象,求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD,點P從點A出發(fā)以每秒1個單位長度的速度沿A﹣D﹣C的路徑向點C運動,同時點Q從點B出發(fā)以每秒2個單位長度的速度沿B﹣C﹣D﹣A的路徑向點A運動,當Q到達終點時,P停止移動,設△PQC的面積為S,運動時間為t秒,則能大致反映S與t的函數關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°,給出以下五個結論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正確的序號是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點M,過點B作BN∥MP交DC于點N,連接AC,分別交PM,PB于點E,F.現有以下結論:
①連接DD',則AP垂直平分DD';
②四邊形PMBN是菱形;
③AD2=DPPC;
④若AD=2DP,則;
其中正確的結論是_____(填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是⊙的弦,交于點,過點的直線交的延長線于點,且是⊙的切線.
(1)判斷的形狀,并說明理由;
(2)若,求的長;
(3)設的面積是的面積是,且.若⊙的半徑為,求.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】教材呈現:下圖是華師版九年級上冊數學教材第77頁的部分內容.
猜想
如圖,在△ABC中,點D、E分別是AB與AC的中點,根據畫出的圖形,可以猜想:
DE∥BC,且DE=BC.
對此,我們可以用演繹推理給出證明
證明在△ABC中,
∵點D、E分別是AB與AC的中點,
∴請根據教材提示,結合圖①,寫出完整證明過程,
結論應用:
如圖②在四邊形ABCD中,AD=BC,點P是對角線BD的中點,M是DC中點,N是AB中點,MN與BD相交于點Q.
(1)求證:∠PMN=∠PNM;
(2)若AD=BC=4,∠ADB=90°,∠DBC=30°,則PQ= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com