【題目】如圖所示MPNQ分別垂直平分ABAC.

(1)若△APQ的周長為12,BC的長;

(2)BAC105°,求∠PAQ的度數(shù).

【答案】(1)12; (2)30°

【解析】試題分析:

(1)根據(jù)線段的垂直平分線的性質證PA=PB,QA=AC.

(2)結合等腰三角形的性質和三角形的內(nèi)角和定理求解.

試題解析:

(1)∵MPNQ分別垂直平分ABAC,∴AP=BP,AQ=CQ.

∴△APQ的周長為AP+PQ+AQ=BP+PQ+CQ=BC.

∵△APQ的周長為12,

∴BC=12.

(2)∵AP=BP,AQ=CQ,

∴∠B=∠BAP,∠C=∠CAQ.

∵∠BAC=105°,

∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°.

∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果向東走5m,記作+5m;那么向西走10m,記作______m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,DE垂直平分AB,交BC于點D,連接AD,若AC=8,DC:AD=3:5.求:

(1)CD的長;

(2)DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊三角形ABC的邊長為3,過AB邊上一點PPEAC于點E,QBC延長線上一點,取PA=CQ,連接PQ,交ACM,則EM的長為_________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若用同一種正多邊形瓷磚鋪地面,不能密鋪地面的正多邊形是(  )
A.正八邊形
B.正六邊形
C.正四邊形
D.正三邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為等邊三角形,AECD,ADBE相交于點P,BQADQPQ3,PE1

1求證BEAD

2AD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′AD于點E

1)試判斷BDE的形狀,并說明理由;

2)若AB=3,AD=9,求BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用同一種規(guī)格的正多邊形地磚鋪滿地面,這種地磚的形狀可能是 . (寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(4,6).雙曲線y=(x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.

(1)求k的值及點E的坐標;

(2)若點F是邊上一點,且△BCF∽△EBD,求直線FB的解析式.

查看答案和解析>>

同步練習冊答案