【題目】如圖1,把一張長(zhǎng)方形的紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C落在E處,BE交AD于點(diǎn)F.

(1)求證:FB=FD;
(2)如圖2,連接AE,求證:AE∥BD;

(3)如圖3,延長(zhǎng)BA,DE相交于點(diǎn)G,連接GF并延長(zhǎng)交BD于點(diǎn)H,求證:GH垂直平分BD.

【答案】
(1)證明:∵△BCD≌△BED,

∴∠DBC=∠EBD,

又∵四邊形ABCD是長(zhǎng)方形,

∴AD∥BC,

∴∠ADB=∠DBC,

∴∠ADB=∠EBD,

∴BF=DF


(2)證明:∵四邊形ABCD是長(zhǎng)方形,

∴AD=BC=BE,

又∵FB=FD,

∴FA=FE,

∴∠FAE=∠FEA,

又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,

∴∠AEF=∠FBD,

∴AE∥BD


(3)證明:∵四邊形ABCD是長(zhǎng)方形,

∴AD=BC=BE,AB=CD=DE,BD=DB,

在△ABD與△EDB中,

∴△ABD≌△EDB(SSS),

∴∠ABD=∠EDB,

∴GB=GD,

又∵FB=FD,

∴GF是BD的垂直平分線,即GH垂直平分BD


【解析】(1)由折疊的性質(zhì)可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;(2)根據(jù)長(zhǎng)方形的性質(zhì)可得和三角形內(nèi)角和定理可得∠AEF=∠FBD,再根據(jù)平行線的判定即可求解;(3)先SSS證明△ABD≌△EDB,再根據(jù)全等三角形的性質(zhì)和垂直平分線的性質(zhì)即可求解.
【考點(diǎn)精析】本題主要考查了翻折變換(折疊問(wèn)題)的相關(guān)知識(shí)點(diǎn),需要掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把直線y=﹣2x+1沿y軸向上平移2個(gè)單位,所得直線的函數(shù)關(guān)系式為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上,從中隨機(jī)抽取兩張.

(1)用畫樹狀圖或列表的方法,列出抽得撲克牌上所標(biāo)數(shù)字的所有可能組合;

(2)求抽得的撲克牌上的兩個(gè)數(shù)字之積的算術(shù)平方根為有理數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(-3xy2)·(2y2-xyz+1)的結(jié)果是(

A. -3xy4+32y3+3xy2 B. -6xy4+3x2y3z-3xy2

C. -6xy4-3x2y3z-3xy2 D. -6xy4+3x2y2z

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中.與xy2是同類項(xiàng)的是( )
A.﹣2xy2
B.2x2y
C.xy
D.x2y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2-8ax(a<0)的圖像與x軸的正半軸交于點(diǎn)A,它的頂點(diǎn)為P.點(diǎn)Cy軸正半軸上一點(diǎn),直線AC與該圖像的另一交點(diǎn)為B,與過(guò)點(diǎn)P且垂直于x軸的直線交于點(diǎn)D,且CBAB=1:7.

(1)求點(diǎn)A的坐標(biāo)及點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);

(2)連接BP,若△BDP與△AOC相似(點(diǎn)O為原點(diǎn)),求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:小明熱愛數(shù)學(xué),在課外書上看到了一個(gè)有趣的定理——“中線長(zhǎng)定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線的平方和的兩倍.如圖1,在△ABC中,點(diǎn)DBC的中點(diǎn),根據(jù)“中線長(zhǎng)定理”,可得:

AB2AC2=2AD2+2BD2

小明嘗試對(duì)它進(jìn)行證明,部分過(guò)程如下:

解:過(guò)點(diǎn)AAEBC于點(diǎn)E,如圖2,在Rt△ABE中,AB2AE2BE2,

同理可得:AC2AE2CE2AD2AE2DE2,

為證明的方便,不妨設(shè)BDCDxDEy,

AB2AC2AE2BE2AE2CE2=……

(1)請(qǐng)你完成小明剩余的證明過(guò)程;

理解運(yùn)用:

(2) ① 在△ABC中,點(diǎn)DBC的中點(diǎn),AB=6,AC=4,BC=8,則AD=_______;

② 如圖3,⊙O的半徑為6,點(diǎn)A在圓內(nèi),且OA=2,點(diǎn)B和點(diǎn)C在⊙O上,且∠BAC=90°,點(diǎn)E、F分別為AOBC的中點(diǎn),則EF的長(zhǎng)為________;

拓展延伸:

(3)小明解決上述問(wèn)題后,聯(lián)想到《能力訓(xùn)練》上的題目:如圖4,已知⊙O的半徑為5,以A(3,4)為直角頂點(diǎn)的△ABC的另兩個(gè)頂點(diǎn)B,C都在⊙O上,DBC的中點(diǎn),求AD長(zhǎng)的最大值.請(qǐng)你利用上面的方法和結(jié)論,求出AD長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長(zhǎng)為x厘米.

(1)當(dāng)矩形紙板ABCD的一邊長(zhǎng)為90厘米時(shí),求紙盒的側(cè)面積的最大值;

(2)當(dāng)EHEF=7:2,且側(cè)面積與底面積之比為9:7時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去
B.帶②去
C.帶③去
D.帶①和②去

查看答案和解析>>

同步練習(xí)冊(cè)答案