精英家教網 > 初中數學 > 題目詳情

【題目】延長線段AB到C,下列說法正確的是(  )
A.點C在線段AB上
B.點C在直線AB上
C.點C不在直線AB上
D.點C在直線BA的延長線上

【答案】B
【解析】 延長線段AB到C,則點C在直線AB上,故選B.
本題主要考查線段、直線的基本概念,根據線段、直線的基本概念判斷即可。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】x2是關于x的一元二次方程x2ax0的一個根,則a的值為( 。

A.1B.1C.2D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點,過點C的直線交AB的延長線于點D,AEDC,垂足為E,F是AE與O的交點,AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點O,AC=6,BD=8.動點E從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止.點F是點E關于BD的對稱點,EF交BD于點P,若BP=x,△OEF的面積為y,則y與x之間的函數圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,且其中一個等腰三角形的底角是另一個等腰三角形底角的2倍,我們把這條對角線叫做這個四邊形的黃金線,這個四邊形叫做黃金四邊形.

(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個內角的度數;

(2)如圖2,點B是弧AC的中點,請在⊙O上找出所有的點D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡);

(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著教育信息化的發(fā)展,學生的學習方式日益增多. 教師為了指導學生有幸效利用網絡進行學習,對學生進行了隨機問卷調查(問卷調查表如圖所示),并用調查結果繪制了圖1、圖2兩幅統(tǒng)計圖(均不完整),請根據統(tǒng)計圖解答以下問題:

(1)本次接受問卷調查的學生共有 人;在扇形統(tǒng)計圖中“D”選項所占的百分比為 ;

(2)扇形統(tǒng)計圖中,“B”選項所對應扇形圓心角為 度;

(3)請補全條形統(tǒng)計圖;

(4)若該校共有1200名學生,請你估計該校學生課外利用網絡學習的時間在“A”選項的有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABOD的周長為4,Px軸、y軸的距離與點Ax軸、y軸的距離分別相等.

(1)請你寫出正方形ABOD各頂點的坐標;

(2)求點P的坐標及三角形PDO的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD,EAD上一點,AB=8,BE=BC=10,動點P在線段BE上(與點BE不重合),點QBC的延長線上,PE=CQ,PQEC于點F,PGBQEC于點G,設PE=x.

(1)求證:△PFG≌△QFC

(2)連結DG.當x為何值時,四邊形PGDE是菱形,請說明理由;

(3)作PHEC于點H.探究:

①點P在運動過程中,線段HF的長度是否發(fā)生變化?若變化,說明理由;若不變,求HF的長度;

②當x為何值時,△PHF與△BAE相似

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結反思后,和烏龜約定再賽一場.圖中的函數圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法: ①“龜兔再次賽跑”的路程為1000米;
②兔子和烏龜同時從起點出發(fā);
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法是 . (把你認為正確說法的序號都填上)

查看答案和解析>>

同步練習冊答案