20、如圖,AE∥BC,AE平分∠CAD,試說(shuō)明∠B=∠C
證明:∵AE∥BC
已知

∴∠1=
∠B(兩直線平行,同位角相等)

∠2=
∠C(兩直線平行,內(nèi)錯(cuò)角相等)

又∵AE平分∠CAD
∴∠1=∠2
角平分線的定義

∴∠
B
=∠
C
分析:由AE∥BC,根據(jù)兩直線平行,同位角相等與兩直線平行,內(nèi)錯(cuò)角相等即可求得∠1=∠B,∠2=∠C,又由AE平分∠CAD,即可求得∠B=∠C.
解答:證明:∵AE∥BC(   已知   )
∴∠1=∠B  (  兩直線平行,同位角相等   )
∠2=∠C  (  兩直線平行,內(nèi)錯(cuò)角相等   )
又∵AE平分∠CAD
∴∠1=∠2(  角平分線的定義      )
∴∠B=∠C (  等量代換 )
故答案為:已知;∠B,兩直線平行,同位角相等;∠C,兩直線平行,內(nèi)錯(cuò)角相等;角平分線的定義;B,C.
點(diǎn)評(píng):此題考查了平行線的性質(zhì).解題的關(guān)鍵是注意掌握兩直線平行,同位角相等與兩直線平行,內(nèi)錯(cuò)角相等定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,AE∥BC,AE平分∠CAD,觀察圖中∠B與∠C有什么關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,求證:AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、已知:如圖,AE⊥BC,DF⊥BC,垂足分別為E,F(xiàn),AE=DF,AB=DC,則△
ABE
≌△
DCF
(HL).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,AB=2,BC=4,CD⊥AB于D.
(1)如圖①,AE⊥BC于E,求證:CD=2AE;

(2)如圖②,P是AC上任意一點(diǎn)(P不與A、C重合),過(guò)P作PE⊥BC于E,PF⊥AB于F,求證:2PE+PF=CD;

(3)在(2)中,若P為AC的延長(zhǎng)線上任意一點(diǎn),其它條件不變,請(qǐng)你在備用圖中畫出圖形,并探究線段PE、PF、CD之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案