【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.點(diǎn)P從A出發(fā),沿AB方向,以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從C出發(fā),沿CA方向,以1cm/s的速度向點(diǎn)A運(yùn)動(dòng);若兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△APQ的面積為S(cm2)
(1)t=2時(shí),則點(diǎn)P到AC的距離是 cm,S= cm2;
(2)t為何值時(shí),PQ⊥AB;
(3)t為何值時(shí),△APQ是以AQ為底邊的等腰三角形;
(4)求S與t之間的函數(shù)關(guān)系式,并求出S的最大值.
【答案】(1);;(2)t=時(shí),PQ⊥AB;(3)當(dāng)t= 時(shí),△APQ是以AQ為底邊的等腰三角形;(4)t=3時(shí),S最大=.
【解析】
試題分析:(1)作PH⊥AC于H,根據(jù)平行線的性質(zhì)得到比例式,計(jì)算求出點(diǎn)P到AC的距離,根據(jù)三角形的面積公式求出△APQ的面積;
(2)根據(jù)相似三角形的判定定理證明△APQ∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可;
(3)根據(jù)等腰三角形的三線合一和相似三角形的性質(zhì)解答即可;
(4)根據(jù)題意列出二次函數(shù)解析式,運(yùn)用配方法把一般式化為頂點(diǎn)式,根據(jù)二次函數(shù)的性質(zhì)解答即可.
解:經(jīng)過(guò)t(s),AP=2t,CQ=t,AQ=6﹣t,
在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm
由勾股定理可求出AB=10cm,
(1)如圖1,作PH⊥AC于H,
當(dāng)t=2時(shí),AP=4cm,AQ=6﹣2=4cm,
∵∠C=90°,PH⊥AC,
∴PH∥BC,
∴=,即=,
解得PH=cm,
S=×AQ×PH=cm2.
故答案為;;
(2)當(dāng)PQ⊥AB時(shí),又∠C=90°,
∴△APQ∽△ACB,
∴=,即=,
解得t=.
答:t=時(shí),PQ⊥AB;
(3)如圖1,當(dāng)△APQ是以AQ為底邊的等腰三角形時(shí),
AH=AQ,
∵△APQ∽△ACB,
∴=,即=,
解得AH=t,
∴t=(6﹣t),
解得,t=,
∴當(dāng)t= 時(shí),△APQ是以AQ為底邊的等腰三角形;
(4)∵△APQ∽△ACB,
∴=,即=,
解得,PH=t,
∴S=×AQ×PH=×t×(6﹣t)=﹣(t﹣3)2+,
∴t=3時(shí),S最大=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=2(x﹣3)2+4的頂點(diǎn)坐標(biāo)是( )
A.(3,4) B.(4,3) C.(﹣3,4) D.(﹣3,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B在直線y=﹣x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( )
A.(0,0) B.(,﹣) C.(,﹣) D.(﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列軸對(duì)稱圖形中,對(duì)稱軸最多的是( 。
A. 等腰直角三角形 B. 圓 C. 正方形 D. 正三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作AC的垂線交AC的延長(zhǎng)線于點(diǎn)E,連接BC交AD于點(diǎn)F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過(guò)12噸(含12噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過(guò)12噸,超過(guò)部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi),小黃家1月份用水24噸,交水費(fèi)42元.2月份用水20噸,交水費(fèi)32元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)調(diào)節(jié)價(jià)分別是多少元;
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,寫出y與x之間的函數(shù)關(guān)系式;
(3)小黃家3月份用水26噸,他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A、平分弦的直徑垂直于弦
B、三角形的外心到這個(gè)三角形的三邊距離相等
C、相等的圓心角所對(duì)的弧相等
D、等弧所對(duì)的圓心角相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com