【題目】如圖,在⊙O中,弦AB與弦CD相交于點(diǎn)G,OA⊥CD于點(diǎn)E,過點(diǎn)B的直線與CD的延長線交于點(diǎn)F,AC∥BF.
(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;
(2)若tan∠F=,CD=a,請用a表示⊙O的半徑;
(3)求證:GF2﹣GB2=DFGF.
【答案】(1)根據(jù)等邊對等角可得∠OAB=∠OBA,然后根據(jù)OA⊥CD得到∠OAB+∠AGC=90°,從而推出∠FBG+∠OBA=90°,從而得到OB⊥FB,再根據(jù)切線的定義證明即可。
(2)
(3)連接BD,根據(jù)在同圓或等圓中,同弧所對的圓周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,從而求出△BDG和△FBG相似,根據(jù)相似三角形對應(yīng)邊成比例列式表示出BG2,然后代入等式左邊整理即可得證。
【解析】
(1)根據(jù)等邊對等角可得∠OAB=∠OBA,然后根據(jù)OA⊥CD得到∠OAB+∠AGC=90°,從而推出∠FBG+∠OBA=90°,從而得到OB⊥FB,再根據(jù)切線的定義證明即可。
(2)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ACF=∠F,根據(jù)垂徑定理可得CE=CD=a,連接OC,設(shè)圓的半徑為r,表示出OE,然后利用勾股定理列式計(jì)算即可求出r。
(3)連接BD,根據(jù)在同圓或等圓中,同弧所對的圓周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,從而求出△BDG和△FBG相似,根據(jù)相似三角形對應(yīng)邊成比例列式表示出BG2,然后代入等式左邊整理即可得證。
解:(1)證明:∵OA=OB,∴∠OAB=∠OBA。
∵OA⊥CD,∴∠OAB+∠AGC=90°。
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,即∠OBF=90°。∴OB⊥FB。
∵AB是⊙O的弦,∴點(diǎn)B在⊙O上。∴BF是⊙O的切線。
(2)∵AC∥BF,∴∠ACF=∠F。
∵CD=a,OA⊥CD,∴CE=CD=a。
∵tan∠F=,∴,即。
解得。
連接OC,設(shè)圓的半徑為r,則,
在Rt△OCE中,,即,解得。
(3)證明:連接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已證),∴∠DBG=∠F。
又∵∠F=∠F,∴△BDG∽△FBG。
∴,即GB2=DGGF。
∴GF2﹣GB2=GF2﹣DGGF=GF(GF﹣DG)=GFDF,即GF2﹣GB2=DFGF。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-4x+7與y=x交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)).
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求拋物線頂點(diǎn)C的坐標(biāo),并求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E,連接BD。
(1)求證:DE是⊙O的切線;
(2)若tan∠ABD=2,CE=1,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt中,,分別以點(diǎn)A、C為圓心,大于長為半徑畫弧,兩弧相交于點(diǎn)M、N,連結(jié)MN,與AC、BC分別交于點(diǎn)D、E,連結(jié)AE.
(1)求;(直接寫出結(jié)果)
(2)當(dāng)AB=3,AC=5時(shí),求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①c>0;②若B(﹣,y1),C(﹣,y2)為圖象上的兩點(diǎn),則y1<y2;③2a﹣b=0;④<0,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-(m+3)x+9的頂點(diǎn)C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點(diǎn),與x、y軸分別交于D、E兩點(diǎn).
(1)求m的值;
(2)求A、B兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國北京已獲得2022年第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)舉辦權(quán),北京也將創(chuàng)造歷史,成為第一個(gè)既舉辦過夏奧會(huì)又舉辦冬奧會(huì)的城市.張家口也成為本屆冬奧會(huì)的協(xié)辦城市,為此,中國設(shè)計(jì)了第一條采用我國自主研發(fā)的北斗衛(wèi)星導(dǎo)航系統(tǒng)的智能化高速鐵路——京張高鐵,作為2022年北京冬奧會(huì)重要交通保障設(shè)施.已知北京至張家口鐵路,鐵路全長約180千米.按照設(shè)計(jì),京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時(shí)比普通快車用時(shí)少了20分鐘,求高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:,是圓的兩條直徑,連接,.
如圖①,求證:,;
如圖②,過點(diǎn)作于點(diǎn),交圓于點(diǎn),在上取一點(diǎn),使,
求證:四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com