【題目】有一座拋物線型拱橋,在正常水位時水面的寬為18米,拱頂離水面的距離為9米,建立如圖所示的平面直角坐標系.
(1)求此拋物線的解析式;
(2)一艘貨船在水面上的部分的橫斷面是矩形.
①如果限定矩形的長為12米,那么要使船通過拱橋,矩形的高不能超過多少米?
②若點,都在拋物線上,設,當的值最大時,求矩形的高.
【答案】(1)此拋物線的解析式為y=-x2;(2)①要使船通過拱橋,矩形的高DE不能超過5米;②矩形CDEF的高為米.
【解析】
(1)根據題意設拋物線的解析式為y=ax2(a≠0).把已知坐標(9,-9)代入解析式求得a即可;
(2)①已知CD=12,把已知坐標代入函數關系式可求解;
②設DM=a米,可得EF=CD=2DM=2a米、DE=FC=9-a2,根據L=EF+DE+CF求得L的值最大時a的值,代入DE=9-a2問題可解.
解:(1)根據題意,設拋物線解析式為:y=ax2,
將點B(9,-9)代入,得:81a=-9,
解得:a=-,
此拋物線的解析式為y=-x2;
(2)①當x=6時,y=-×36=-4,
∵9-4=5,
∴矩形的高DE不能超過5米,才能使船通過拱橋;要使船通過拱橋,矩形的高DE不能超過5米;
②設DM=a米,則EF=CD=2DM=2a米,
當x=a時,y=-a2,
∴DE=FC=9-a2,
則L=2a+2(9-a2)=-a2+2a+18=-(a-)2+,
∴當a=時,L取得最大值,矩形CDEF的高為米
科目:初中數學 來源: 題型:
【題目】如圖1是某小型汽車的側面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點A逆時針方向旋轉,當旋轉角為60°時,箱蓋ADE落在AD'E'的位置(如圖2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求點D'到BC的距離;
(2)求E、E'兩點的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.
(1)求證:與相切;
(2)連接,若的半徑為4,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將□ABCD的邊AB延長至點E,使AB=BE,連接BD,DE,EC,DE交BC于點O.
(1)求證:△ABD≌△BEC;
(2)若∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,線段與軸平行,且,拋物線經過點和,若線段以每秒2個單位長度的速度向下平移,設平移的時間為(秒).若拋物線與線段有公共點,則的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲騎電動車、乙騎摩托車都從M地出發(fā),沿一條筆直的公路勻速前往N地,甲先出發(fā)一段時間后乙再出發(fā).甲,乙兩人到達N地后均停止騎行,已知M,N兩地相距km,設甲行駛的時間為x(h),甲、乙兩人之同的距離為y(km),表示y與x函數關系的圖象如圖所示.請你解決以下問題:
(1)求線段BC所在直線的函數表達式;
(2)分別求甲,乙的速度;
(3)填空:點A的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經過測試同時開放2個大餐廳和1個小餐廳,可供3000名學生就餐;同時開放1個大餐廳,1個小餐廳,可供1700名學生就餐.
(1)請問1個大餐廳、1個小餐廳分別可供多少名學生就餐.
(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全校4500名學生就餐?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com