【題目】木匠黃師傅用長(zhǎng)AB=3,寬BC=2的矩形木板做一個(gè)盡可能大的圓形桌面,他設(shè)計(jì)了四種方案:

方案一:直接鋸一個(gè)半徑最大的圓;

方案二:圓心O1O2分別在CD,AB上,半徑分別是O1C,O2A,鋸兩個(gè)外切的半圓拼成一個(gè)圓;

方案三:沿對(duì)角線AC將矩形鋸成兩個(gè)三角形,適當(dāng)平移三角形并鋸一個(gè)最大的圓;

方案四:鋸一塊小矩形BCEF拼接到矩形AEFD下面,并利用拼成的木板鋸一個(gè)盡可能大的圓。

1)寫出方案一中的圓的半徑;

2)通過(guò)計(jì)算說(shuō)明方案二和方案三中,哪個(gè)圓的半徑較大?

3)在方案四中,設(shè)CE=),圓的半徑為,

關(guān)于的函數(shù)解析式;

當(dāng)取何值時(shí)圓的半徑最大?最大半徑是多少?并說(shuō)明四種方案中,哪一個(gè)圓形桌面的半徑最大?

【答案】(1)方案一中圓的半徑為1

(2)方案三的圓半徑較大

(3) ①當(dāng)0<x<時(shí),y=

當(dāng)時(shí),

當(dāng)時(shí),y最大,y最大=,

四種方案中,第四種方案圓形桌面的半徑最大。

【解析】

試題(1)圓的直徑就是BC的長(zhǎng)

方案二:連O,作EOAB于E,然后利用勾股定理即可得

方案三:連OG,然后利用OCG∽△CDE即可得

3)分情況討論:分0<x<這兩種情況進(jìn)行分析

試題解析:(1)方案一中圓的半徑為1

(2)方案二

如圖,連O,作EOAB于E,設(shè)OE=X,

那么(2X)=2+(3-2X),解得X=

方案三

連OG,OGCD,∵∠D=90°,OG//DE

∴△OCG∽△CDE,

設(shè)OG=y,,∴y=方案三的圓半徑較大

(3) ①當(dāng)0<x<時(shí),y=

當(dāng)時(shí),

當(dāng)時(shí),y最大,y最大=,

四種方案中,第四種方案圓形桌面的半徑最大。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,ADBC,AD=2BC,ABD=90°,EAD的中點(diǎn),連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,BC=1,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)為正邊上一點(diǎn)(不與點(diǎn)重合),點(diǎn)分別在邊上,且.

(1)求證:;

(2)設(shè),的面積為,的面積為,求(用含的式子表示);

(3)如圖2,若點(diǎn)邊的中點(diǎn),求證: .

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】. 在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字﹣1、02,它們除了數(shù)字不同外,其他都完全相同.

1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為 ;

2)小麗先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再?gòu)牟即须S機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的縱坐標(biāo),請(qǐng)用樹狀圖或表格列出點(diǎn)M所有可能的坐標(biāo),并求出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l的解析式是y=x-4,并且與x軸、y軸分別交于A,B兩點(diǎn).一個(gè)半徑為1.5的☉C,圓心C從點(diǎn)(0,1.5)開始以每秒移動(dòng)0.5個(gè)單位長(zhǎng)度的速度沿著y軸向下運(yùn)動(dòng),當(dāng)☉C與直線l相切時(shí),則該圓運(yùn)動(dòng)的時(shí)間為(  )

A. 3 s6 sB. 6 s10 sC. 3 s16 sD. 6 s16 s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x單位:小時(shí)進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問(wèn)題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)

3請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四個(gè)全等的直角三角形按圖示方式圍成正方形ABCD,過(guò)各較長(zhǎng)直角邊的中點(diǎn)作垂線,圍成面積為S的小正方形EFGH.已知AMRtABM較長(zhǎng)直角邊,AM2EF,則正方形ABCD的面積為( 。

A. 14SB. 13SC. 12SD. 11S

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,ABCD,BCCD,過(guò)點(diǎn)CCEAD于點(diǎn)ECE4,△CDE沿射線DA平移,當(dāng)CE經(jīng)過(guò)點(diǎn)B時(shí),運(yùn)動(dòng)停止.設(shè)點(diǎn)D的平移距離為x,平移后的三角形與四邊形ABCD的重合部分面積為y,yx的函數(shù)圖象如圖2所示:

1)圖中DE   

2)求BC的長(zhǎng);

3)求yx的函數(shù)關(guān)系式,并直接寫出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案