【題目】如圖,、、、分別為反比例函數(shù)與圖象上的點(diǎn),且軸,軸,與相交于點(diǎn),連接、.
(1)若點(diǎn)坐標(biāo),點(diǎn)坐標(biāo),請(qǐng)直接寫出點(diǎn)、點(diǎn)、點(diǎn)的坐標(biāo);
(2)連接、,若四邊形是菱形,且點(diǎn)的坐標(biāo)為,請(qǐng)直接寫出、之間的數(shù)量關(guān)系式;
(3)若、為動(dòng)點(diǎn),與是否相似?為什么?
【答案】(1)、、;(2);(3),證明詳見解析.
【解析】
(1)先利用A,B兩點(diǎn)求出兩個(gè)反比例函數(shù)的解析式,然后根據(jù)C點(diǎn)與A點(diǎn)縱坐標(biāo)相同,D點(diǎn)與B點(diǎn)橫坐標(biāo)相同即可得到C,D的坐標(biāo),然后P的橫坐標(biāo)與B的橫坐標(biāo)相同,縱坐標(biāo)與A的縱坐標(biāo)相同;
(2)分別把A,C的坐標(biāo)表示出來,再利用菱形的性質(zhì)和點(diǎn)P的坐標(biāo)即可求出答案;
(3)設(shè)點(diǎn)的坐標(biāo)為,分別表示出點(diǎn)A,B,C,D的坐標(biāo),求出 的長度,能夠得出,所以
(1)解:∵點(diǎn)在上,點(diǎn)在上
∴
∴
∵軸,軸
∴A,C的縱坐標(biāo)相同,B,D的橫坐標(biāo)相同,點(diǎn)P的橫坐標(biāo)與B的橫坐標(biāo)相同,縱坐標(biāo)與A的縱坐標(biāo)相同
∴
當(dāng)時(shí),代入到中得 ,∴點(diǎn)
當(dāng)時(shí),代入到中得 ,∴點(diǎn)
∴,,
(2)∵點(diǎn)的坐標(biāo)為
∵軸,軸
∴A,C的縱坐標(biāo)與點(diǎn)P的縱坐標(biāo)相同
當(dāng)時(shí),代入到中得 ,∴點(diǎn)
當(dāng)時(shí),代入到中得 ,∴點(diǎn)
∵四邊形是菱形
∴
∴
∴
(3)解:
證明:設(shè)點(diǎn)的坐標(biāo)為
則點(diǎn)的坐標(biāo)為、點(diǎn)的坐標(biāo)為
點(diǎn)的坐標(biāo)為、點(diǎn)的坐標(biāo)為
,
,
,,即
又
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=40°,點(diǎn)D、點(diǎn)E分別從點(diǎn)B、點(diǎn)C同時(shí)出發(fā),在線段BC上作等速運(yùn)動(dòng),到達(dá)C點(diǎn)、B點(diǎn)后運(yùn)動(dòng)停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
拓展:若△ABD的外心在其內(nèi)部時(shí),求∠BDA的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華人民共和國《城市道路路內(nèi)停車泊位設(shè)置規(guī)范》規(guī)定:
一、在城市道路范圍內(nèi),在不影響行人、車輛通行的情況下,政府有關(guān)部門可以規(guī)劃停車泊位.停車泊位的排列方式有三種,如圖所示:
二、雙向通行道路,路幅寬米以上的,可在兩側(cè)設(shè)停車泊位,路幅寬米到米的,可在單側(cè)設(shè)停車泊位,路幅寬米以下的,不能設(shè)停車泊位;
三、規(guī)定小型停車泊位,車位長米,車位寬米;
四、設(shè)置城市道路路內(nèi)機(jī)動(dòng)車停車泊位后,用于單向通行的道路寬度應(yīng)不小于米.
根據(jù)上述的規(guī)定,在不考慮車位間隔線和車道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車道設(shè)置同一種排列方式的小型停車泊位,請(qǐng)回答下列問題:
(1)可在該道路兩側(cè)設(shè)置停車泊位的排列方式為 ;
(2)如果這段道路長米,那么在道路兩側(cè)最多可以設(shè)置停車泊位 個(gè).
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中直徑AB⊥弦CD于E,點(diǎn)F是的中點(diǎn),CF交AB于I,連接BD、AC、AD.
(1)求證:BI=BD;
(2)若OI=1,OE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺(tái)乙種品牌空調(diào)的進(jìn)價(jià)比每臺(tái)甲種品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺(tái).
(1)求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià);
(2)該商場擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺(tái)進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)為2500元/臺(tái),乙種品牌空調(diào)的售價(jià)為3500元/臺(tái).請(qǐng)您幫該商場設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10臺(tái)空調(diào)后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2016年開始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年度 | 投入技改資金x/萬元 | 產(chǎn)品成本y/(萬元/件) |
2016 | 2 | 18 |
2017 | 3 | 12 |
2018 | 4 | 9 |
2019 | 4.5 | 8 |
(1)根據(jù)表格中數(shù)據(jù),求y關(guān)于x的函數(shù)解析式。
(2)在圖中的網(wǎng)格中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,畫出該函數(shù)的大致圖像。
(3)如果打算在2020年讓產(chǎn)品成本不高于7萬元,則投入技改資金至少為 萬元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋里有四個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為,,,.隨機(jī)摸取一個(gè)小球然后放回,再隨機(jī)摸取一個(gè).
請(qǐng)用畫樹狀圖和列表的方法,求下列事件的概率:
(1)兩次取出的小球標(biāo)號(hào)相同;
(2)兩次取出的小球標(biāo)號(hào)的和等于4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度y(m)與它的飛行時(shí)間x(s)滿足二次函數(shù)關(guān)系,y與x的幾組對(duì)應(yīng)值如下表所示:
x(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(Ⅰ)求y關(guān)于x的函數(shù)解析式(不要求寫x的取值范圍);
(Ⅱ)問:小球的飛行高度能否達(dá)到22m?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x與直線x=2相交于點(diǎn)A,將拋物線y=x2沿線段OA從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A,使其頂點(diǎn)始終在線段OA上,拋物線與直線x=2相交于點(diǎn)P,則點(diǎn)P移動(dòng)的路徑長為( 。
A.4B.3C.2D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com