在電腦課上,小明將圖中的扇形分割,圖①是一個扇形AOB,將其作如下劃分:
第一次劃分:如圖②所示,以OA的一半OA1為半徑畫弧,再作LAOB的平分線,得到扇形的總數(shù)為6個,分別為扇形AOB、扇形AOC、扇形COB、扇形A1OB1,扇形A1OC1,扇形C1OB1;
第二次劃分:如圖③所示,在扇形C1OB1中,按上述劃分方式繼續(xù)劃分,可以得到扇形的總數(shù)為11個;
第三次劃分:如圖④所示;…
依次劃分下去.
(1)根據(jù)題意,完成下表:
劃分次數(shù) 扇形總個數(shù)
1 6
2 11
3
4
n
(2)根據(jù)上表,請你判斷按上述劃分方式,能否得到扇形的總數(shù)為2013個?為什么?
分析:(1)通過劃分條件,每劃分一次,就增加5個扇形,根據(jù)此可得到規(guī)律,完成上表.
(2)設劃分n次時,得到扇形2013個,求出n為整數(shù)時就存在,不是整數(shù)時就不存在.
解答:解:(1)第一次劃分后的扇形的總個數(shù)為1+5=6;
第二次劃分后的扇形的總個數(shù)為1+2×5=11;
第3次劃分后的扇形的總個數(shù)為1+3×5=16;
第n次劃分后的扇形的總個數(shù)為1+5n.

(2)不能夠得到2013個扇形,因為滿足5n+1=2013的正整數(shù)n不存在.
點評:本題考查理解題意的能力,是個規(guī)律性題目,關鍵找到規(guī)律,寫出一般式,第二問把2013和一般式聯(lián)系起來列成方程,可求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

在電腦課上,小明將圖中的扇形分割,圖①是一個扇形AOB,將其作如下劃分:
第一次劃分:如圖②所示,以OA的一半OA1為半徑畫弧,再作LAOB的平分線,得到扇形的總數(shù)為6個,分別為扇形AOB、扇形AOC、扇形COB、扇形A1OB1,扇形A1OC1,扇形C1OB1
第二次劃分:如圖③所示,在扇形C1OB1中,按上述劃分方式繼續(xù)劃分,可以得到扇形的總數(shù)為11個;
第三次劃分:如圖④所示;…
依次劃分下去.
(1)根據(jù)題意,完成下表:
劃分次數(shù)扇形總個數(shù)
16
211
3
4
n
(2)根據(jù)上表,請你判斷按上述劃分方式,能否得到扇形的總數(shù)為2013個?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在電腦課上,小明將圖中的扇形分割,圖①是一個扇形AOB,將其作如下劃分:
第一次劃分:如圖②所示,以OA的一半OA1為半徑畫弧,再作LAOB的平分線,得到扇形的總數(shù)為6個,分別為扇形AOB、扇形AOC、扇形COB、扇形A1OB1,扇形A1OC1,扇形C1OB1;
第二次劃分:如圖③所示,在扇形C1OB1中,按上述劃分方式繼續(xù)劃分,可以得到扇形的總數(shù)為11個;
第三次劃分:如圖④所示;…
依次劃分下去.
精英家教網(wǎng)

(1)根據(jù)題意,完成下表:
劃分次數(shù) 扇形總個數(shù)
1 6
2 11
3
4
n
(2)根據(jù)上表,請你判斷按上述劃分方式,能否得到扇形的總數(shù)為2013個?為什么?

查看答案和解析>>

同步練習冊答案