如圖,△ABC是等邊三角形,點D,E分別在BC,AC上,且BD=CE,AD與BE相交于點F,
(1)試說明△ABD≌△BCE;
(2)△AEF與△ABE相似嗎?說說你的理由;
(3)BD2=AD•DF嗎?請說明理由.

【答案】分析:(1)根據(jù)等邊三角形的性質(zhì),利用SAS證得△ABD≌△BCE;
(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可證∠ABE=∠EAF,又∠AEF=∠BEA,由此可以證明△AEF∽△BEA;
(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以證明△BDF∽△ADB,然后可以得到,即BD2=AD•DF.
解答:解:(1)∵△ABC是等邊三角形,
∴AB=BC,∠ABD=∠BCE,
又∵BD=CE,
∴△ABD≌△BCE;

(2)△AEF與△ABE相似.
由(1)得:∠BAD=∠CBE,
又∵∠ABC=∠BAC,
∴∠ABE=∠EAF,
又∵∠AEF=∠BEA,
∴△AEF∽△BEA;

(3)BD2=AD•DF.
由(1)得:∠BAD=∠FBD,
又∵∠BDF=∠ADB,
∴△BDF∽△ADB,
,
即BD2=AD•DF.
點評:本題利用了等邊三角形的性質(zhì)和相似三角形的判定和性質(zhì)求解,有一定的綜合性.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF精英家教網(wǎng)∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點D作BC的平行線交AC于E,則△ADE的三個內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點,∠BAD=15°,將△ABD繞點A點逆時針方向旋轉(zhuǎn)后到達△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習冊答案