如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.
(1)經(jīng)過O、A、B三點的拋物線解析式為y=-x 2+x.(2分,設解析式給1分)
|
在Rt△AOD中,AD=OD=1,∠AOD=45°.
在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.
∴OQ=PQ=t.
∴S=S△OPQ=OQ·PQ=×t×t=t 2(0<t≤2)
②當2<t≤3時,設PQ交AB于點E,重疊部分為梯形AOPE,
作EF⊥x軸于點F,如圖2.∵∠OPQ=∠QOP=45°
∴四邊形AOPE是等腰梯形 ∴AE=DF=t-2.
∴S=S梯形AOPE= (AE+OP)·AD= (t-2+t)×1
=t-1(2<t≤3)
③當3<t<4時,設PQ交AB于點E,交BC于點F,
重疊部分為五邊形AOCFE,如圖3.
∵B(3,1),OP=t,∴PC=CF=t-3.
∵△PFC和△BEF都是等腰直角三角形
∴BE=BF=1-(t-3)=4-t
∴S=S五邊形AOCFE=S梯形OABC -S△BEF= (2+3)×1-(4-t)2
=-t 2+4t-(3<t<4) ……(5分,每種情況給1分)
(3)只要=或者=即可,3-t=×t 或3-t=×t
解得t=2或t= ………………………(8分,求出一解給2分,兩解給3分)
(4)存在. t1=1,t2=2. …………………(10分,每個值給1分)
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
|
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com