【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=____°.
【答案】45.
【解析】試題分析:根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AE=BE,然后求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質求出∠BAE=∠ABE=45°,再根據(jù)等腰三角形兩底角相等求出∠ABC,然后求出∠CBE,根據(jù)等腰三角形三線合一的性質可得BF=CF,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BF=EF,根據(jù)等邊對等角求出∠BEF=∠CBE,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.
解:∵DE垂直平分AB,
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAE=∠ABE=45°,
又∵AB=AC,
∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,
∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,
∵AB=AC,AF⊥BC,
∴BF=CF,
∵EF=BC(直角三角形斜邊中線等于斜邊的一半),
∴BF=EF=CF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.
故答案為:45.
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=(m+1)x , y隨x的增大而減小,則m的取值范圍是( 。
A.m<-1
B.m>-1
C.m≥-1
D.m≤-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題情境】一節(jié)數(shù)學課后,老師布置了一道課后練習題:
如圖:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,點E、F分別在A和BC上,∠1=∠2,F(xiàn)G⊥AB于點G,求證:△CDE≌△EGF.
(1)閱讀理解,完成解答
本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請你完整地書寫這道練習題的證明過程;
(2)特殊位置,證明結論
若CE平分∠ACD,其余條件不變,求證:AE=BF;
(3)知識遷移,探究發(fā)現(xiàn)
如圖,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,若點E是DB的中點,點F在直線CB上且滿足EC=EF,請直接寫出AE與BF的數(shù)量關系.(不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實驗中學現(xiàn)有學生2 870人,學校為了進一步豐富學生課余生活,擬調(diào)查各興趣小組活動情況,為此校學生會委托小容、小易進行一次隨機抽樣調(diào)查.根據(jù)采集到的數(shù)據(jù),小容繪制的統(tǒng)計圖1,小易繪制的統(tǒng)計圖2(不完整)如下:
請你根據(jù)統(tǒng)計圖1、2中提供的信息,解答下列問題:
(1)寫出2條有價值信息(不包括下面要計算的信息);
(2)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請將小易畫的統(tǒng)計圖中的“體育”部分的圖形補充完整;
(3)愛好“書畫”的人數(shù)占被調(diào)查人數(shù)的百分數(shù)是多少?估計實驗中學現(xiàn)有的學生中,有多少人愛好“書畫”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在超市買一食品,外包裝上印有“總凈含量(300±5)g”的字樣。小明拿去稱了一下,發(fā)現(xiàn)只有297g.則食品生產(chǎn)廠家 (填“有”或“沒有”)欺詐行為。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價.
(2)求該校購買20個A品牌的足球和2個B品牌的足球的總費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形的兩邊長分別為3和6,第三邊的長是方程x2-6x+8=0的一個根,則這個三角形的周長是( )
A. 9 B. 11 C. 13 D. 11或13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,點A和點B在小正方形的頂點上.
(1)在圖1中畫出△ABC(點C在小正方形的頂點上),使△ABC為直角三角形(畫一個即可);
(2)在圖2中畫出△ABD(點D在小正方形的頂點上),使△ABD為等腰三角形(畫一個即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com