【題目】如圖,△ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,4),B(2,2),C(4,6)(正方形網(wǎng)格中,每個小正方形的邊長為1)
(1)畫出△ABC向下平移5個單位得到的△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);
(2)以點(diǎn)O為位似中心,在第三象限畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為1:2,直接寫出點(diǎn)C2的坐標(biāo)和△A2B2C2的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(5,)的拋物線y=ax2+bx的對稱軸是x=2,點(diǎn)B是拋物線與x軸的一個交點(diǎn),點(diǎn)C在y軸上,點(diǎn)D是拋物線的頂點(diǎn).
(1)求a、b的值;
(2)當(dāng)△BCD是直角三角形時(shí),求△OBC的面積;
(3)設(shè)點(diǎn)P在直線OA下方且在拋物線y=ax2+bx上,點(diǎn)M、N在拋物線的對稱軸上(點(diǎn)M在點(diǎn)N的上方),且MN=2,過點(diǎn)P作y軸的平行線交直線OA于點(diǎn)Q,當(dāng)PQ最大時(shí),請直接寫出四邊形BQMN的周長最小時(shí)點(diǎn)Q、M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC、AC于點(diǎn)D、E,連結(jié)EB交OD于點(diǎn)F.
(1)求證:OD⊥BE;
(2)若DE=,AB=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),直線分別與軸、軸交于點(diǎn),.拋物線經(jīng)過點(diǎn)與點(diǎn),且與軸的另一個交點(diǎn)為.點(diǎn)在該拋物線上,且位于直線的上方.
(1)求上述拋物線的表達(dá)式;
(2)聯(lián)結(jié),,且交于點(diǎn),如果的面積與的面積之比為,求的余切值;
(3)過點(diǎn)作,垂足為點(diǎn),聯(lián)結(jié).若與相似,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于兩點(diǎn),與軸交于點(diǎn).
(1)求此拋物線的表達(dá)式及頂點(diǎn)的坐標(biāo);
(2)若點(diǎn)是軸上方拋物線上的一個動點(diǎn)(與點(diǎn)不重合),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn),連結(jié).設(shè)點(diǎn)的橫坐標(biāo)為.
①試用含的代數(shù)式表示的長;
②直線能否把分成面積之比為1:2的兩部分?若能,請求出點(diǎn)的坐標(biāo);若不能,請說明理由.
(3)如圖2,若點(diǎn)也在此拋物線上,問在軸上是否存在點(diǎn),使?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“三等分角”是數(shù)學(xué)史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設(shè)P(,)、R(,),求直線OM對應(yīng)的函數(shù)表達(dá)式(用含,的代數(shù)式表示);
(2)分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個鈍角(用文字簡要說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個單位長度的速度沿A﹣D﹣C的路徑向點(diǎn)C運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個單位長度的速度沿B﹣C﹣D﹣A的路徑向點(diǎn)A運(yùn)動,當(dāng)Q到達(dá)終點(diǎn)時(shí),P停止移動,設(shè)△PQC的面積為S,運(yùn)動時(shí)間為t秒,則能大致反映S與t的函數(shù)關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點(diǎn)A(3,0)、
B(0,-3),點(diǎn)P是直線AB上的動點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫
坐標(biāo)為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長時(shí),求△ABM的面積.
(3)是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com