【題目】已知:如圖,已知⊙O的半徑為1,菱形ABCD的三個頂點A、B、D在⊙O上,且CD與⊙O相切.

(1)求證:BC與⊙O相切;

(2)求陰影部分面積.

【答案】(1)證明見解析;(2)S陰影

【解析】試題分析:(1) 依據(jù)SSS證得△OCD≌△OCB,得到∠OBC=ODC=90°,所以 BC與⊙O相切;(2) 陰影部分面積等于2SDOC-S扇形OBD,計算可得出結(jié)論.

試題解析:(1)連結(jié)OB、OD、OC,

ABCD是菱形,∴CD=CB,

OC=OC,OD=OB,

∴△OCD≌△OCB,∴∠ODC=OBC,

CD與⊙O相切,∴ODCD,

∴∠OBC=ODC=90°,即OBBC,點B在⊙O上,

BC與⊙O相切.

(2) ABCD是菱形,∴∠A=C,

∵∠DOB與∠A所對的弧都是,∴∠DOB=2A,

由(1)知∠DOB+C=180°,∴∠DOB=120°,DOC=60°,

OD=1,OC=

S陰影=2SDOC-S扇形OBD=2××1×

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標系中的位置如圖所示.

(1)作出△ABC關(guān)于y軸對稱的△ABlCl;
(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】坐標系中,△ABC的坐標分別是A(-1,2),B(-2,0),C(-1,1),若以原點O為位似中心,將△ABC放大到原來的2倍得到△ABC′,那么落在第四象限的A′的坐標是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩邊長分別為5cm2cm,則該等腰三角形的周長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市第四次黨代會上,提出了建設(shè)美麗城市決勝全面小康的奮斗目標,為策應(yīng)市委號召,學(xué)校決定改造校園內(nèi)的一小廣場,如圖是該廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形A的邊長是1米.
(1)若設(shè)圖中最大正方形B的邊長是x米,請用含x的代數(shù)式分別表示出正方形F、E和C的邊長;
(2)觀察圖形的特點可知,長方形相對的兩邊是相等的(如圖中的MN和PQ).請根據(jù)這個等量關(guān)系,求出x的值;
(3)現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙2個工程隊單獨鋪設(shè)分別需要10天、15天完成.兩隊合作施工2天后,因甲隊另有任務(wù),余下的工程由乙隊單獨施工,試問還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過點D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=SACD+SABC= b2+ ab.
又∵S四邊形ADCB=SADB+SDCB= c2+ a(b﹣a)
b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要求八年級同學(xué)在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓(xùn)練,為了了解八年級學(xué)生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學(xué)生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:

根據(jù)圖中提供的信息,解答下列問題:

(1)a= ,b= ;

(2)該校八年級學(xué)生共有600人,則該年級參加足球活動的人數(shù)約 人;

(3)該班參加乒乓球活動的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,ABC=60°,BC=2cm,DBC的中點,若動點E1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒,連接DE,當BDE是直角三角形時,t的值______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市修通一條與省會城市相連接的高速鐵路,動車走高速鐵路線到省會城市路程是500千米,普通列車走原鐵路線路程是560千米.已知普通列車與動車的速度比是2:5,從該市到省會城市所用時間動車比普通列車少用4.5小時,求普通列車、動車的速度.

查看答案和解析>>

同步練習(xí)冊答案